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Welcome. This is lecture 56 and in this we go back to our Groebner basis things and then we

will see we saw how it could be used to compute syzygies for an ideal. So, this is mostly an

overview of things that we will not prove, but at least to discuss how one could use this to

compute a free resolution not just the; not just the syzygy of an ideal. So, I mean really when

I meant here at this point when I meant syzygies I meant I mean we do mean free resolution

all of them syzygies then the syzygies of them and so on.
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So, in an earlier lecture we saw how a Groebner basis was used to construct syzygies of an

ideal  and we so,  far  we only  looked at  computing  Groebner  basis  for  ideals,  but  it  can

actually be generalized to not all  modules, but sub-modules of free modules,  how is that

done?  So,  remember  an  ideal  itself  ideal  also  is  a  submodule  of  a  free  module  it  is  a

submodule of a free module of rank 1. 

So, that is and again this is this would be finitely generated at least for us we would not worry

about arbitrary (Refer Time: 02:27) . So, I will just briefly give an overview of how this can

be done . It is essentially just rewriting everything that we did for ideals in terms of modules.

So, it is also way for us to recap how I mean one proceeded with ideals.
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So, let F=.⊕r
i=1R ei be a free module with a given basis {e1 ,... ,er} of rank r . By a monomial

of F, we mean an element of the form X 1
a1 ...X n

ane i for some a1, ... , an≥ 0,1≤i≤r. So, this is what

we mean by a monomial in F. 

So, it is exactly like a monomial ideal it is exactly a monomial  in the polynomial ring R, it is

just. A monomial submodule of F is a submodule generated by monomials of F. 
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Now, if we have a monomialsub module then generators would be of this kind let us collect



all the generators with a fixed e i . If you multiply them by elements of R we would get all R-

linear combinations of these monomials in other words we will get a monomial ideal just the. 

If we just look at all elements in the monomial submodule where which involves only one

term  e i and  arbitrary  R-linear  combinations.  So,  we  would  just  get  some  element  in  a

monomial ideal times e i that is a first observation. So, I will write them, but let me finish the. 

 So, let M be a monomial sub-module . Then M i={r ei :r e i∈M ,r ∈R}.  of course, it is a sub

module sub module of M and is of the form I iei for some monomial ideal I i inside R. 
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That is because we take a generating set in which a generating set for M which involves

monomials. We fix a monomial generating set for M and in that pick out all the ones that

have this e i and then our linear combinations would just be combinations of that. So, this is

the first observation that we want to make. 

Secondly,  M i∩M j=0 foralli≠ j that is clear because all of these are multiples of  e i, all of

these  are  multiples  of  e j and  they  cannot  have  an  intersection.  And  thirdly,

M=M 1+M2+...+M r and this now says that M=.⊕r
i=1M i

. So, in other words conversely if

M is a direct sum of such things then M is a monomial sub module. 
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So, a monomial submodule is. So, M ⊂F  is a monomial submodule if and only if there exist

I 1, ... , I r monomial ideals in R such that . Each of them is a sub module of the corresponding

factor inside here and then the direct sum of that is M . So, this is what we just wanted to

observe. 
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So, now, we can define a monomial order. So, a monomial order on F analogous to R how it

is done on R. Meaning we have to give a total order on the set of monomials that respects

multiplication. So, total order on the set of monomials that respects multiplication.  So, these



are monomials of F that respects multiplication by monomials of and these are monomials of

R.
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So,  by  the  way  I  should  have  stated  this,  this  description  in  this  generality  is  there  in

Eisenbud’s book. Eisenbud’s one of the references that I had given. Not every book discusses

this  in  that  generality,  but  there  discussing  it  for  ideals  is  not  enough  to  describe  how

syzygies would be how a free resolution would be computed. 

So, then we have an analogue of Buchberger theorem. I mean all those things analogue of

Buchberger theorem. So, let us briefly review how that is. So, F as above and let g1 , . . , g t∈F

non zero elements for ,i≠ j (Refer Slide Time: 11:16)



 

define mij=
lcm(¿ (gi ) ,∈(g j ) )

¿ (gi )
 .
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So, this is and for each. So, then division algorithm, I mean not division algorithm, but the

consequence.  So,  there  is  a  division  algorithm  in  this  context  division  algorithm  gives

mij gi−m ji g j. So, this is the S polynomial this would be the analogue of the S polynomial in

the ideal case, this is of the form  ∑
u

❑

qu
ij gu+r ij . So, we are expressing the s polynomial in

terms of the other I mean in terms of the generators not necessarily other generators, but the



generators plus some r ij. 

And again we have seen this r ij need not be unique, but one can ensure that no term of r ij is

divisible by the initial term of any gu. So, with no term of r ij divisible by ¿ (gu ) for any u. So,

we can all this is just the same thing that we did for modules for ideals. So, we can write it

like this and then the Buchberger criterion is.  Buchberger criterion, the theorem. 
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That  I  mean  Buchberger’s  theorem  was  for  ideals,  but  it  can  be  generalized  like  this

{g1 , .... , gt } is a Groebner basis for the submodule of F  for the submodule of generated by it if

and only if  r ij=0 , foralli≠ j. Same I mean we compute this and it is it becomes a Groebner

basis exactly when this remainder is 0 and if the remainder is. 

So, the algorithm is we compute this, the remainder is nonzero then add that also to the list of

to the set G and then we do redo all the calculation once more and  then we check if there is

any leftover remainders and then we add and so on. 

So, and what does this mean? I mean what does it mean Groebner basis for the sub module?

So, it means exactly what it had meant earlier that is {∈ (gi ) :1≤i≤ t } generates the submodule

generated by generates the submodule of F generated by the initial terms of all the elements

in M.
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So, exactly analogous to what we do for ideals one can prove the statement and we will. So,

we will  not  attempt  to  prove  it.  So,  this  is.  Now, the  key point  in  this.  So,  this  is  just

describing how to compute. So, now, we have constructed. So, now, we have constructed a

Groebner basis for M and then it means that.
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So, therefore, for all . So, let us say this Groebner basis is {g1 , ... , g t},  then for i≠ j  we have

this mij g i−m ji g j=∑
u

❑

qu
ij gu



 that is precisely when it is a Groebner basis.
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So, this gives us a syzygy right this can be rewritten as a relation. So, this gives a syzygy and

the theorem is that all syzygies are generated like this. So, this tells us what is the kernel of

the  surjection  and then from that we can construct a presentation matrix and so on and so,

we can proceed. 

. So, repeat this for the kernel of. So, remember M ⊂F some F1 surjects onto  M because we

can choose a Groebner basis like this and then we know what the we will get a surjective map

and then we repeat this for the kernel of this map.

So, let us just call this thing ϵ  repeat this for the kernel of ϵ . So, I mean this thing tells us the

kernel of ϵ  and then repeat the same thing compute the Groebner basis and so, on and then

repeat  this  and that  would give us a free resolution.  Now, in theory this  will  also prove

Hilbert’s Hilbert syzygy theorem, but we need a technical statement for that. 
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So, in principle one can prove a Hilbert’s syzygy theorem this way. How? Well, we need a

key point which we will not be able to prove this is a this requires some development of what

is  called  flatness.  For  every  finitely  generated  R-module  M,  the  graded  Betti  numbers

β ij (¿ (M ) )≥ β ij (M ). 

So, this needs a way to be able to move from M to ¿ (M ) in some control fashion in which you

can compare the free resolutions, the ranks of the free modules in the free resolution. So, this

is well beyond our scope now. 
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So, but, there is such a result. So, with this we can actually  now reduce to monomial sorry

reduce meaning reduce a proof of reduce the proof of Hilbert’s syzygy theorem to  monomial

submodules of M  but what do they look like? 

They look like  .⊕ I ie i where you know F has basis {e1 ,. . ,er }. So, this is basis of F, but this is

this direct sum as direct sum of modules and it is not very difficult to check that if you take

minimal resolution of each one of the components, the direct sum of the complexes will give

a direct resolution of the free resolution of the direct sum. So, therefore, further we reduce to

monomial ideals to each component of this and then this is just something dummy you can

just treat just have to prove for I i. 
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So, we want to show that for a monomial ideal  I ⊂R, I has a minimal free resolution of

length n, n is the number of variables. In fact, I mean there are explicit description of what a

free resolution would be; it need not be minimal, but at least we can prove this statement

from that. 

So, this is not I mean there are concrete descriptions of non-minimal free resolutions or more

correctly  not  necessarily  minimal  free  resolutions  of  length  less  than  n.  So,  definitely  a

minimum resolution will have length less than n. So, one can prove this, but I would like to

do it in a slightly different way which will motivate us to for the next lecture. 

So, if I is not prime let us ask. So, I monomial ideal when will I be a prime? Well if it



involves an if a minimal generating set involves an actual monomial meaning a monomial of

degree at least two, then it cannot be prime because that would it would be something of the

form some X iX jX k, but if that in that case either X i or X j or X k has to be inside here. 

So,  is  a  prime  ideal  if  and  only  if  I  is  generated  by  something  of  the  form  X i1 , ... , X ic,

1≤i1≤ ....≤in. It is generated by a bunch of variables the subset of the variables. So, this is

only when it is prime. 

(Refer Slide Time: 24:28)

if I is not prime choose a variable X i∉ I   and X i divides a monomial minimal generator of I

such thing will exist then check that I : X i. So, this will be an exercise intersect. So, this will

be strictly bigger than I and I+ (X i) this will also be strictly bigger than  equal to I. So, this

you will do as an exercise. 
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 So, now, we have a we have an exact sequence  0→
R
I :X i

→R
I
→ R
I+ (Xi )

→0. So, this is

great degree preserving an element of homogeneous element here goes to a homogeneous and

its residue class of same degree here. So, this degree preserving, in order to make this degree

preserving the 1 bar here has to go to  X i. So, in order to make this degree preserving the

generator here has to be in degree 1. So, now, this is degree preserving. 

So, now, there is a standard construction homological algebra called horseshoe lemma which

you will work out as an exercise. If you have a resolution like →F1→F0→ I mean and say

→G1→G0→ one can construct a resolution for the middle term by taking F1⊕G0→F0⊕G0

appropriate maps, maps are not obvious. 

I mean one can work it out, but they are not their maps are not just direct sums and so on, so

with appropriate maps. So, this will be in the exercises to figure out what the map should be.

So, there is more there is actually which we will see later what is called a map of complexes

which we will see in the next lecture, but there is such a thing. So, in other words if this has

length less than or equal to n and this is length less than or equal to n this also has length less

than or equal to n.
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So, therefore, we can. So, if you choose i to be maximal where it is not less than or equal to n

by noetherian we these two things are less than or equal to n. So, by noetherian property we

may assume that assume the result for ( I :X i ) and I+ (X i) by horseshoe lemma it is also true

for I. So, this work I mean this argument work precisely because it is not prime. 
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So, then now, therefore, we can assume it is prime. So, now, we have to handle the prime

case. So, therefore, may assume I is prime. So let us take a couple of examples and this will

be; this will be done using what is called Koszul complex. So, let us say I=(X1 ). So, this for



now it is just an example we will do this properly in the next lecture. 

So, then here is what we could do. We could take I we could take 0→R (−1)→x1R→0 it has

to be injective I mean it will be injective this is a domain and then 0. This is the resolution for

one  variable.  If  you  have  two  variables  I=(X1 , X2 ) then  the  resolution  is

0→R (−2 )→R (−1 )⊕ R (−1 )→0

So, the kernel of this one can verify again that. So, I will explain the shift here, but the kernel

here again the same idea  R1e1+R2 e2=0 means  R1X 1+R2 X2=0,  X 2 and  X 1 are irreducible

elements not multiples of each other. So, then X 1 has to divide R2 and X 2 has to divide R1 and

then we would get this.

It is the same argument that we did in the earlier example in the previous lecture. So, this is a

this  it  is  a  free  resolution  in  two variables  these  are  examples  of  what  is  called  Koszul

complexes. So, in the next lecture we will look at Koszul complexes try to understand the

construction behind them. Again it will require some detour into homological techniques, you

could use this as a motivation to study more homological algebra. So, this is the end of this

lecture. 


