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Welcome this is lecture 55. So, in the next this lecture and the next 5 we will look at syzygies

called  Free  resolutions  and  what  information  can  be  cleaned  out  of  computing  free

resolutions. Sorry some information that can be cleaned out of there are many other things

that can be obtained by looking at a free resolution we will see an introduction to that.

So, we are discussing going to start free resolutions. So, we will not be able to prove many

things properly, because to discuss these things one needs to spend some time developing

basic notions about complexes and homological algebra which we have not done and we do

not have the time now to do this. So, there will be a few results that we will assume and then

we will see how to use them or how what.
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So, recall, so I have not yet defined this, but let us so recall that. So, if you have an ideal I

inside a polynomial ring R=k [X 1 , .. , X n]. Then when we only looked at this case but this is

true more generally, then the relations among the R linear relations among a generating set let

us say  {f 1 ,…, f m }. So, this is called syzygy of this is what we looked at in the last lecture

syzygy of f 1 ,…, f m.
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Can be determined by looking at the kernel.
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Can be determined by looking at the kernel of a surjective map R linear map Rm→I , a basis

element here goes to f i. So, this is {e1 ,…, em } is a basis. So, this is the basis for this module

and if we map e i to f i then the syzygies of f i are precisely the elements of this kernel.

So, this is what we saw in the last lecture. But notice that this is the same for modules also,

because all that we are using here is an R linear map from a free module to I we are not using

the fact that this is an ideal or that we are using is that it is an R module.
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So, same argument works for modules also, again we will only be concerned about finitely

generated modules that is the I mean much better theorems in that context than otherwise. So,

how would we and why do we have to work understand do this for modules also?

So, one of the things that we would want to do is so given even if you are given an ideal let

us say generated by m elements, we can get a free module of rank m to surject onto this

would give the kernel of this map. So, let us call this map ϵ , kernel of ϵ  is actually gives the

syzygies of I of really the generating set, but we will see that it is actually I.

Now, so let us write that thing here I will write it slightly below here for a purpose. So now

this is also finitely generated, but it is no more an ideal.
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So, kernel of ϵ  is finitely generated sub module of Rm and typically m has to be greater than

1. So, this is not an ideal at all. But we can repeat the same procedure that is say kernel of ϵ

needs m1 generators. 

So, then we take a free module of rank m1 map it surjectively on to kernel of ϵ  and kernel of ϵ

of course it is inside here injectively and the composite map we call it let us call it  ∂1 So,

what have we done? We have constructed a presentation of I this we have done earlier.
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So, we have constructed a presentation of I, where we talked about finitely presented and all

those things. So, this we have seen this earlier. Now, we can repeat this is a surjective map it

is image here and δ  is a composite. So, the kernel of the surjection from Rm1→ker ϵ  is same

as a kernel of δ 1.

So, kernel ∂1 is kernel of the map from Rm1 to kernel of ϵ  that is the way δ  was defined. So,

therefore, we can now consider here kernel of ∂1 and then some Rm2 surjecting on to this and

this is anyway. So, we what we are doing is we are getting a presentation matrix for kernel of

epsilon using this map not just some.

Because we are using this map in constructing this, we are looking at the kernel of either of

these maps ∂1 or the subjective map onto kernel of ϵ . That we are using to get a presentation

matrix here and so then let us call this thing ∂2 and this we can repeat.
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.

So, then take  Rm2surjecting onto kernel of  ∂1 this gives  Rm2 to  Rm1 which we called  ∂2. The

map from Rm to I is ϵ , Rm1to Rmis ∂1 and Rm2to Rm1is ∂2. So, note that this is an exact sequence.

So, what does what do we have? We have ϵ  is surjective, kernel ϵ  is image of ∂1 and kernel

of ∂1 is image of ∂2 and in fact we can continue this.
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So, we can continue this to get what is called a free resolution of I and we could have done

this for a and notice that in this process we had to learn to present not just ideals, but also



modules. So, we may start with an ideal, but immediately after that we have to start worrying

about modules.

So, we may as we will learn about modules and as we mentioned earlier nothing that this is

an ideal is used all that we have used is that this is in R module. So, let us make a definition.

So, before we define we need to, not for the purpose of this course, but in general when we

want  to  do  this  we  need  to  get  we  need  to  discuss  something  more  general  than  exact

sequences.

So, definitions this is only for us this is just a language that is all, we will not going to study

this or worry about these issues in this course. So but let us wherever we start we understand

what this means the words mean. Complex I mean technically a chain complex, but we will

just always refer to as a complex or more precisely chain complex of R modules. It is a

sequence of R modules and R linear maps.
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So, again we will only consider special  cases. So, we will assume that the complex ends

somewhere on the right of the this kind. So, these are all linear maps and such that, so let us

call these maps let us say μ2 going from M 2 to M 1; μ1 going from M 1 to M 0 and so on.

So, μ3 here such that μi μ i+1=0. So, that is kernel of μi contains the image of μi+1, notice this is

how the composition will work. We apply μi+1 first and then μi this is a composite map from

M i+1 to M i−1.
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So, this is what is called a complex.
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So, we will denote this by (M ̇ , μ∙) and if we need to specify the maps sometimes we would

not need we will also just like this. If we need otherwise we will just say M  and remember

that our convention is that μiis the map from M i to M i−1 and these are R linear maps. So, then

the homology of M, again it is it depends on the maps not just the modules is H i and this is

for all i; is H i=
Ker μi

ℑμ i+1

.



Kernel of μi contains the image of μi+1, so the quotient is what we are interested in and this is

for  i∈Z , but often the modules that the complexes that we are concerned will be 0 after a

while. It may not be 0 at M 0 itself, it could be like some M−500 but it would still be 0 after a

while and so this is ok, but nonetheless we can still define it for all Z.
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So, then say that a complex M ̇  is exact if all the homologies are 0. So for example, so then

we can make the definition of a free resolution.

(Refer Slide Time: 16:21)



So, definition I mean we can make a proper definition of free resolution, free resolution of an

R module M is a complex. …→F2→F1→F0→0 So, this will end at some  F0 and it may go

infinite to this side, but we usually put this thing here I mean ok.
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Such that H i (F ̇ )=0 for all i≠0 and H 0 (F ∙ )=M  sorry that is not enough that does not make it

a free resolution such that. And F i is a free R module for all i.

So, that should have been if you have stated that first F i is a free R module for all i that is

why it is called a free resolution. And at in this complex at these places there is no homology,

there is homology here which is isomorphic to M.
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So, just a note. So, some books might I mean not might they some books refer to the. So, this

F as we defined is not exact it has exactly one it is not exact. It has one nonzero homology

and that is isomorphic to M and it is at the right most end. 

So, this is what how our convention is this is what we will say some books refer to the exact

sequence. So, we put everything as about …→F2→F1→F0→0 , now what does it mean to

say that the 0-th homology? It is M. 

So, it means that is isomorphic to M, it means that the 0-th homology here is everything goes

to 0 here this is the 0 map and the image of this map is the image of this. So, H 0 is the co

kernel of this last map F1→F0.

So then if you write M here exact to M→0; it becomes exact as a free resolution of M. So,

we will of course we will refer to this condition as free resolution; some books if you read it

might actually write this as a free resolution. I mean, but it would be clear from the context

whether the book is using this convention or the other convention. So, this is just ok. So, now,

we want to define what is called a minimal free resolution.
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And so far whatever I have said just works for any Noetherian ring and finitely generated

module.  In  fact,  we  have  given  use  finitely  generated  anyway.  So,  this  is  some  large

generality, but now we so graded it.

So, two things that we want to emphasize minimal graded free resolution. So, now we will

restrict ourselves to a graded ring, I mean we will restrict ourselves to the polynomial ring,

but some most of it will again work over rings in which graded rings in which the 0-th piece

is a field and finitely many generators all of which have positive degree.

So it will, so but we will restrict ourselves to the specific situation. So, here is a Lemma. So,

let  …→F2→F1→F0→M→0 be  a  graded  presentation  of  finitely  generated  graded  R

module M. So, we are given a finitely generated graded R module and we take a graded

presentation.

So, we take a homogeneous generating set for M and then we map that many generators onto

M,  look  at  the  kernel  then  we  take  homogeneous  generators  for  the  kernel  and  then

correspondingly build  F1.  So, these things are the free modules are graded and the maps

preserve degrees. So, that is all the two non maps here this is anyway 0 so ok.
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.

So, this means that is Fi are graded free modules and maps preserve degrees. This is what we

mean by a graded presentation then the following are equivalent. 1, this is a free module.

Rank of F0=μ(M ) which is the minimum number of generators for M. The size of a minimal

generating set of M it is it is finite. So, this is the definition. 

So, this is the first hypothesis r kR F0=μ (M ). 2 let us call this map ∂1 the presentation map;

ℑ∂1⊆mF0 and 3 if we write ∂1 as a matrix, then it is entries are homogeneous elements of

the maximal ideal. In other words it does not contain any units.
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So, 2 if and only 3 I leave as an exercise it is just rewriting what means to say that I mean

what it just trying to understand what it means to say a map lands inside mF0.

So, proof 2 if and only if 3 exercise and so 1 if and only if 2. So, let k be the so sorry let us

label this map also. So, let us us just rewrite the map. So, the map is F2→F1is ∂1and this map

let us call ϵ . So, let Kbe the kernel of ϵ . So, then 2 let K be the kernel of ϵ .
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So, then we have a map an exact sequence 0→K→F0→M→0 this is the map epsilon, this

gives 
M
mM

 this was we have seen this earlier. If 
F0

mF0
 and then 

K
mK

 this may not be injective,

but we get such a map,. So, we cannot fill this back inside here, but so much of this is exact.

But  the  hypothesis  is  that  so  now what  is  the  hypothesis?  Rank before  we get  into  the

hypothesis r k k(
F0

mF0 )=r k R. If it is a free module then just use the same basis you will get the

quotient module and μ ( M )=r k k( M
mM ) by Nakyamas Lemma. So, the hypothesis is that these

two numbers are the same in other words we are saying that this map is I mean this is an R

linear map it is also 
R
m

 linear map.

So, what we are saying is. So, let us call these things let us just call that map ϵ . So, then what

we are saying is that 1 if and only if. So, 1 says these 2 numbers are the same, so 1 if and only

if ϵ  is an isomorphism. So, that is one place, so well we have already used for this statement

we have already used Nakayamas lemma, so M is finitely generated. So, we have already

used it,  but here is another place where it is used that these are finite dimensional vector

space.

So, if there is a surjective map, then it must also be injective, finite dimensional vector space

of  the  same  rank  so  surjective  map  must  also  be  injective.  So  therefore,  this  is  an

isomorphism. 
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So, in other words the image of this map. So, let us call this thing δ 1 image of δ1 is 0, so this

is an isomorphism.
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If and only if image of δ 1  is 0, but what does that mean? Image of δ1 is well it is just image

of k inside the quotient. So, it is just 
K+mF0
mF0

. So, this is true if and only if 
K+mF0
mF0

=0, but

that is the same as k is inside mF0. But which is what we wanted to prove. So, this is, but

remember δ 1 is a surjective map onto k, so this means that image of δ 1 is inside mF0 so this is

the proof.



 So therefore if we if you construct a free resolution picking minimal number of generators at

every stage we would get a minimal free resolution.
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So, then let us summarize these things in a proposition. Let M be a finitely generated graded

R module, then M has a minimal graded free resolution and what does that mean? It means

…→F2→F1→F0→0 that  is  so what is  that  is  a complex.  This  such that  a complex of

finitely generated graded free modules F i and degree preserving maps such that ok.
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So, let us also we also need to label the maps ∂1 ,∂2 and so on, such that for all i≥1 i image of

∂i⊆mF i.

So, this is the minimal  part and  H i (F . )=0.  So, we defined it as a complex is 0 for all  i

different from 0 and H 0 ( F . )≅M . So, this is just saying it is the free resolution. 

So,  all  the  ranks  of  these  are  finite  the  maps  are  minimal  in  this  sense  and there  is  no

homology all the way till  here and the homology here homology there is no homology in

these red parts and the homology in the green part is M ok. So, such a thing exists. So, this is

what we want.

And so we want to define 2 things, so first is a theorem we will not prove. So now we do

want R to be in so far this works even in the generality of graded rings you know finitely

generated algebras over a field. Not necessarily polynomial rings graded degree of X i equals

1, M finitely generated graded.
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Then M has a minimal graded free resolution of length at most the number of variables I

mean the rank of n the dimension of R.

So, this is and we will not so this is called Hilbert syzygy theorem. So, in the next lecture we

will go back to computational ideas behind compute finding resolutions and there and then

we will try to sketch a proof of how one could prove Hilbert syzygy theorem. Although this is



typically proved using some after first course you know I mean after some understanding of

homological algebra not in a computational way.

I mean although Hilbert’s original proof itself was non homological, because homological

algebra was not understood at that time. So, just one more definition and then we will look at

we define the graded Betti numbers β i , j(M ) to be the number of copies of R (− j) this is the

rank 1 free module with a generator of degree j. So, number of copies of in F i in a minimal

graded free resolution and you might wonder this there are so many choices made in the

construction earlier. So, why is this even well defined a fact is that.
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And the fact is that this does not depend on the choice of minimal graded free resolution F .,

choice of F again we cannot we are not in a position to prove it, but we will use this thing for

now.
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So,  now let  us quickly  look at  a Macaulay  example.  So,  here is  a polynomial  ring in  2

variables x and y, ideal we want to take  (x2 , xy), so then we asked. So, then we asked the

command is res which is an abbreviation for resolution we asked for the resolution of I . So,

note that so it produces something called chain complex.
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.

But note here that it is not a resolution of I it is really the resolution of 
R
I

. So, please keep

that in mind. So, that so we call that thing F, if you want to see the maps in F there is a



command called I mean there is a key for a chain complex called dd. So, you can ask F .dd

there is no space it is justF . dd.
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So, it will put out the maps the first map is so as I said this is a resolution of 
R
I

 and not of I.

So, the map is R2→R1 in which base generator here the first basis element gets multiplied to

x2 times the basis element here, second one gets multiplied to xy times the basis element here

in order to make this degree preserving. If the generator here is degree 0 the generator here

must have degree 2.

So, that is what this thing says. So, in the second map this is the map from F2→F1 the map is

this and it says the target of the map the basis elements have these degrees 2 2. So, this just

says the basis I mean a basis element here gets multiplied to − y times the first basis element

plus x times second basis element and the both basis elements have degree 2 and hence the

basis element here will have degree 3.

Only then you can make this map degree preserving and the final map is 0 and it shows these

things that ok. So, do not worry about chain complex map.
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Now, we ask for Betti of the free resolution. So, it produces this and this is what we are

discussed.
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So, let us we need a brief explanation of what this means. So, what is in position? So, column

index indices are the position in the free resolution. So, think of this as being written from the

right to left  the arrows are going from the right to left,  so exactly how we saw it  in the

displays earlier. So, the 0-th the rank of F0 is 1, F1 is rank 2 and F2 is rank 3 that is what this



total row means, in the so the column indices are where in the free resolution we are looking

at.

The row indices has the following the this is how it is done, the number in column with index

i and row with index j is β i ,i+ j. So, one should keep that in mind. So, here it says β0,0 is 1 and

β0 , j=0 for every nonzero j and that is another way of saying F0 is R. Next β1,2=2 and β1 , j=0

for every j different from 2 and that is just another way of saying F1=R (−2)
⨁2 with a direct

sum of 2 copies of itself.
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So,  then  this  is  what  2  quarter  that  is  because  I  is  minimally  generated  by  2  quadratic

polynomials we needed to choose this and there is not much choice and β2,3=1 and for other

j, β2 , j=0.
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So, equivalently  F2=R (−3). So, here is a proof which I will anyway explain give it as an

exercise you should work this out. So, if you write the basis for F1 as e1 , e2, then e1 goes to x2

, e2 goes to xy, then r1 ,r2be syzygy of the e i mean relation among them. But then we apply

the map ∂1 going from F1 to F2. So, then we get this x1. So, this is just applying the map e1

goes to x2 and e2 goes to xy, so we get this relation.

We can assume that they are homogeneous but because of this now this is a relation inside r,

so you can divide by x. So, then you get x r1+ y r2=0. So, from this y r2 is divisible by x. This

is a UFD. So, x must divide r2 because it does not divide y the x is irreducible.

So, we can write r2 as x times s for some s∈R, then we put that back we will set r1 is − ys

this  is  just  putting  that  thing  back.  And  therefore  an  element  of  the  kernel  which  was

r1 e1+r2 e2 remember it is the kernel of that thing is sy e1+x e2 and that is exactly what sorry

that is exactly what; that is exactly what this map says.

The kernel of this map is generated by the image of this and image of this is – y1 e1+ x e2. So,

this is the end of this lecture and in the next lecture we will look at computing syzygies etc,

then we will try to learn some I mean do some more examples.


