Computational Commutative Algebra
Prof. Manoj Kummini
Department of Mathematics
Chennai Mathematical Institute

Lecture — 54
More on graded rings
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So, here is a proposition. So, now, we are just in this lecture we are always working with
graded case. So, R is a polynomial ring may be I set up the notation R is a polynomial ring

graded, and deg X ,=1, and I C R homogeneous ideal.
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Proposition. Let this greater than ( be a monomial order, then the Hilbert series H %:H RI
[q

We cannot talk about Hilbert series which were not graded. The initial ideal is always graded,

it is a ideal generated by monomial, so it is always graded. But the if I is not homogeneous,

the left side is not a meaningful object.

So, in particular, dim§:dim % So, any quantity that can be recovered from the Hilbert

series should agree for both. So, this one is the dimension which is given by the exponent in
the denominator 1-t to the something, so that determines the dimension. So, dimensions are

the same, multiplicities are the same.



(Refer Slide Time: 02:33)

tri”

i T =k nl)

T R\JH D]

Zz

A

And because of this, height is the same. So, sorry this in is always with respect to the given.

And the proof is the same which is ok. If we take R\{€f V[ EI,f#0]}.
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The set of monomials of R not in this set |if,|[f EI,f#0] is a k-basis of %, and for the same

reason. Remember they are not the same elements. The monomials modulo I in this case and
monomials modulo in [ in this case, but it is the same I mean it is a bijective correspondence.

So, these both have the same dimension, but that is not the point.
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The point is that this respects the decomposition of R as B:&iEN (B

%:gie N(ﬂ) . So, this decomposition remember is k modules. So, you can break up the
6 i

set of monomials in this list, monomials of R not in this set by degree and of a that set in a

fixed degree will be the basis for ? in that degree and also for % in that degree. Yeah, sorry

is one should say gives, because it is a residue class modulo I.
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So, therefore, in each degree the dimensions are the same. So, therefore, rk(?) =rk

And this multiply this by t with the I, then take the sum you will get the same function on

both sides. So, the Hilbert series are the same.

(Refer Slide Time: 05:57)

. (¢ o
| A=y '
e U_t)olkM J

kit M= 1)

e 7= R bR
s iR B AL

qnlt]

And dimension is given by remember H,,=——————_ So, if two modules have the same
( 1_ t )dlmM 1

Hilbert function, they will have the same dimension, and the same q,, and multiplicity of M
1S qM(l). So, therefore, things that depend if two modules have the same Hilbert function,

they have the same dimension, and same multiplicity.

What about height? So, this is from the previous lectures, ht I =dim R—dim?. This is true

not in arbitrary Noetherian rings, it is true in a polynomial ring which we did not completely
prove it. We needed a stronger version of Noetherian normalization, and we needed a going

down theorem to prove the statement, or to prove a statement which would imply this.

So, therefore, but if dimensions are the same, this is I mean this is by the observation. This is
by the theorem which we only sketched and not proved and the same thing here. I and (1
have the same height. Let us do a quick example to use this idea. And we will come back to

this example about computing what is called syzygies, and being able to compute them.
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So, R is a polynomial ring in three variables, R=k[x,y, z]. And let us say we are considering

graded Lex. So, let f,=xy—z°, f,=xz— y’. And in graded Lex, this is a leading term. So, the
1= Xy 2 y

leading terms do have a, | mean some common factor. So, let us cancel that thing.

So, let us take f;=zf,—yf, and this is y’>—7° And its leading term is this. So, if you just
took the I mean we have seen this, if you just took the leading terms of the generator that may

not give all the initial terms, image a minimal generating set need not be a Grobner basis.
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So, now, we want to claim that the initial ideal of I is generated by these three things

xy,xz,y’ there is nothing else. So, we will use ideas of the previous result to prove this. So,

we will check this by looking at Grobner basis. So, let us put degrees here. Let us put ?, and

then let us put R mod this ideal. This is the claim xy, xz, y’. So, we know this statement right

it is the other direction that we want to prove.

So, here in degree 0, ? basis is just 1. So, I will write down the basis and the Hilbert

function. Similarly, basis is just 1 and Hilbert function is just 1. In degree 2, degree 1, we
have only killed a higher degree polynomial. So, here it is just {x,y,z}; 3. In degree 2, so
what is left over? So, these are the this is what we go went modulo y. Each time we see, so

degree 2 has quadratic polynomials.

Each time we see a y* modulo f, we can write it as xz. And similarly each time we say 7

modulo of ideal we can write, so sorry I did not clarify what I is, I is the ideal generated by f,

and f,.

So, modulo I, y* can be written as xz, and z* can be written as xy. Therefore, there is x* then
there is xy,xz. And yz can be written as one of these, z? can be written as one of these, yz

cannot be written as one of these, so that is actually independent. And then, we can check

what is in degree 2 what are the monomials not in this not divisible by that. So, that is also

x*,y*,z* and yz; 4. So, both Hilbert functions are 4.

So, I will just do one more degree, and then we will see that it is actually 1,3,4,4,.... So, in
degree 3, we have x°, when we have x*y, these are leftover things xy. Each time we see, so

x’y,x y> If you see 2, then using this it can be rewritten asy?,. So, we do not need to take

x y’s same reason we do not need to take y ;%, I mean similar reason using this.

So, now, let us look at things that are not divisible by x. So, there is y3 which can be written
in terms of this xyz. And xyz is new, I mean xyz cannot be written using these relation. It can

be changed to some anything relations.
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So, there is xyz. And this is all that there is there is 4, and similarly if you do this there is 4.

And then the conclusion is that the rank of ? in degree 2 onwards i=4 for all i>2. Rank of

ﬁ in degree i is equal to the same rank as this for all i. And this is equal to by the
Xy,Xz,y

theorem this is equal to rank of % in degree 1 for all iEN.

But remember that this ideal is inside the initial ideal. But ( surjects onto % What

xy,xz,y’)
is the kernel? Well, because of this relation, kernel will have Hilbert functions constant 0. So,
let us just go back here because of this inequality here. So, this, thing here this now implies

that kernel is 0.
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If, there is a kernel in some degree j, then this module will have more in degree j than this
module in degree j this module will be bigger and will have bigger rank than this one, but that
is not what the calculation shows they are all the same thing. So, therefore, the kernel is 0.
So, this is a way to use these ideas to say that some we have already constructed the initial

ideal, so comparing Hilbert functions.

So, now, I want to introduce a new topic this is going to be the related to the next few lectures
which is the following called syzygies. So, what is that? So, we will only worry about
homogeneous ideals now, it can be done in any way ok. So, let f,...,f,€R=k[x,,..,x,] be
homogeneous elements. We can do it in any case I mean more generally for any Noetherian

ring etc.
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A syzygies of these things is an R linear relation Y r;f;=0. So, for example, X and Y in
k[ X,Y] has a syzygies; YX — XY =0. So, this is the maybe let me just use a different letter.
So, just to say what is f and what is r in this notation? So, let us put the f’s in green and the so
this X here. So, these things in red are the coefficients r;, and these things in green are these
f: So, this is the syzygies of these two elements. So, how would we find the syzygies that is

what we want, but what is the I mean ok?
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So, we are given this f4,...,f,. Let d; be the degree of f;, because we already assumed that is
homogeneous. Then we have the following free module R twisted by —d;, so ¢i= 1R(—di)

onto I in which basis element here of degree d; maps to f.

So, e; maps to f; where e; is a basis element of degree d;. So, technically we should say
choose a basis element with like this, give it degrees d; as above, and then consider the free

module it is graded this one, and then e; maps to f;, this is a subjective map.
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So, where do syzygies come? Then Y r;f;=0, that means, that is we have a syzygies if and
only if the element ) r;e; in that free module. So, this free module is in the kernel of the
above map. So, in some sense finding asking for syzygies is same thing as asking for a kernel

of this this map.

So, then if you know if you have algorithms to find the kernels of group module
homomorphisms, then we can find all syzygies. So, this is what we will I mean and building
this up into what is called a free resolution is what we will do be doing in the next few
lectures. But before that I want to show an example which tells us that if you know to

compute Grobner basis, then we can compute syzygies.

So, we will do it for an ideal now, later I will mention that it can also be done for modules
without explaining how it is done, but and that is how we will start [ mean free resolution can

be constructed. So, these things will be explained in the next few lectures. So, right now let



us just look at how to use the same calculation as we do in the Grobner basis to come up with

syzygiess.
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R = 22/101[x,y,z, MonomialOrder => Glex];
£l = xsz-y"2; f2=xy-272;

”
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Compute S(fy, f
Input
£3 = yxf1-zsf2

None of its terms are divisible by the initial terms of f,, 2, so keep it.
Compute S(f), f3
Input
-y 3+f1 - xezefl

So, we will just do this in Macaulay. So, here are it is the same example from the last time f,
is xz—y* and f, is xy—z° in GLex. And then we want to compute the S polynomial S(f of 2).

So, we use different convention from what we did in that example.

But so the leading term is xz leading term here is y, so multiply this by y and this by x, and
then take by z and then take the difference. So, S(f,,f,), we call it f5. So, this is —y’+7%
When we did it earlier we had swapped the order, so we got the negative of this, but let us

keep this convention.

So, we look at this. So, none of terms are divisible by the initial terms of f; and f,. So, this is
our reasoning is what is going on in Buchberger algorithm. So, we will keep it. There is
nothing to simplify, no further division algorithm remainder to be taken. So, we now have

fi,f2,f5 And we actually proved that this is a Grobner basis.
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None of its terms are divisible by the initial terms of f, f2, so keep it.
Compute S(fy, f3)

Input
-y 3xf1 - xez#fl
4 5
-x%z +3
R
Its leading terms is divisible by in(f;)
Input
ootz"3#f1
5 23
\
i l

But let us we do not know it. So, well ask S(f,,f,). So you have to multiply f, by — y* and

f, by xz, and then take the difference. So, we got this one so some term. Now, if you look at

this, this ones leading term is divisible by the initial term of f right xz. So, we try to simplify

it. So, what we did was, we had to multiply by z°. So, 0o plus 2> times f .
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Compute S(fy, f3) §:§*%
Input e
~y~3#f1 - xrzxf3 NPTEL
4 5
¢z +y
R
Its leading terms is divisible by in( f;)
Input
ootz 3%f1
5 23
Ve
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Thisis -1 fa

oo + y"2+f3

Input

We gota relation S(fy, f5) +2*f1+ 123 =0.

Rewriting; ( -+7

2+ 1P)f3 =0,

This indeed is fy fs = f f3 = 0, so “trivial” but this is not the case always.

Compute S(fa, f3).

-y 2#{2 - x+f3
z"2xf1+00

Input

i

I

So, we got y°— y?7° which is actually — y*f, and we just check oo+y’f, and this is 0. So,

this is indeed true. So, what is the conclusion that we have got? s ( fi.f 3)+z3 f+y f,=0.

We can rewrite it to look at like this. But then it just here it just says f,f;—f;f3=0 like that

xy—yx=0. There is so in this case it is sort of an obvious trivial syzygies, but let us check

this is not always the case.
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Rewriting: (- +2°) fy +
3= 0,50 “trivial” but this is not the case always,

This indeed is f
Compute $(f;, f3).

-y~ 2#£2 - x3f3
2" 2xf1+00

Thisis —zf;

v+ f)fs =0

Input

This gives a relation z2f} - y*fo = xfy = 0.

Gk,

NPTEL



So, let us check f,. Let us now compute S(f,,f). So, we ask this is the computation. We ask

—y*f,—xf, there is a common factor. So, we get this polynomial. This polynomial it is

immediately clear that this is f,z>. So, we just ask I mean —f, z°.

So, we just ask z*f,+00 and it says it is 0. So, therefore, what the conclusion is that we got a

syzygies. Now this is not one of those trivial syzygies z*f,— y°f,—x f,=0.

So, the same procedure which gives the Grobner basis also if you rewrite it nicely and just
work through it, it gives us the relations among the generators. So, this will be used to for us
to build what is called a free resolution and try to learn I mean use that information in some

context.

So, this is the end of this lecture. So, the next few lectures would be devoted to a preliminary
understanding of free resolutions, some invariants coming about free resolution for

homogeneous ideals and how to use it.



