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Welcome.  This  is  lecture  50.  In  this,  we  want  to  prove  a  relation  between  the  Laurent

polynomial qM  which is the numirator in the way we wrote the Hilbert series and the Hilbert

polynomial  PM.  So,  it  is  not  very  surprising  because  the  difference  between  the  Hilbert

polynomial and the Hilbert function is only in some finitely many degrees. After that the

behavior of the Hilbert function  is the same as the behavior of the Hilbert polynomial .

So, if you write the generating function for both of these, then asymptotically, we should get

the same behavior and the denominator should be the same. So, it is not very surprising, but

so  let  us  explore  this  in  the  let  us  try  to  understand  this.  So,  we  continue  the  notation

R=k [X1 ,…, X1 ] and M is a finitely generated graded module.

And we have various things that we have defined so far which is we know the Hilbert series.

Then, this is of the form 

. So, let us put d to be the dimension of M and then, we also have PM which is the Hilbert



polynomial. So, this is; so here is a proposition. 
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So, write we know that the Hilbert polynomial PM=∑
i=0

n−1

e i ( M )Pi

. This was the binomial looking polynomial  Pi (X )was X choose i. So, it is like a binomial

function ok. 

So, assume. So, write P as this, then so what is this expressions relation to the Hilbert series

expression in terms of the Hilbert series? Then, e_i( M) = 0 for all i≥ d and ed−1 (M )=qM (1 ).

This is a number that we had studied and established was that this is a positive integer in the

last proposition. 

So, this is the number of copies in which the top degree binomial polynomial  Pi shows up.

So,  this  is  non-zero and this  is  these are  the ones above that  are  0.  .  This  number here

ed−1 (M )=0 is  called the multiplicity  of M. We will  see this  when we look at  projective

geometry multiplicity of M. So,proof is not, it just a sort of not very difficult at all, I mean we

are just comparing. 
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So, notice that there exist some j0 integer such that the Hilbert function rk (M j )=PM ( j ), for

all j≥ j0. That this is true. There is a polynomial with this property is what how we defined

PM; I mean what gave PM . So, this is true. 

So, in therefore, if we look at the following two sums  HM ( t )− .∑
j∈ N

PM ( j ) t jis a laurnt

polynomial. We want to restrict this to the non negative part because if we work out what

the value of  PM ( j ) is, well that will depend on so what the value of this binomial polynomial

Pi is and it is 0 for some short interval, short interval 0, - 1 and so on. After that it becomes

non-zero and from 1 or it is 0 for a short interval which includes up to -1. 

So, -1, -2 and a few numbers this function will take value 0 and thereafter, for  smaller and

smaller integers, I mean more negative integers, this polynomial takes a non-zero value and

one would expect the same behavior for PM ( j )also. 

So, for j sufficiently small this will be a non-zero thing.  So, we want to sort of restrict the

right hand side to the non-negative and left hand side, we do not care. 

The point is that the difference, so there will be some t to the minus exponents coming from

might be there from this part. But eventually, for j≥ j0; this will cancel each other . So, this is

a Laurent polynomial. 



So,  now  Hilbert  polynomial  itself  is  a  Laurent  polynomial  divided  by  (1−t )
d,  this  we

established . So, now, if you take HM  and subtract a Laurent polynomial, we will get that this

is also of the same form.
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So, therefore, there exist a Laurent polynomial r (t)  such that ∑
j∈ N

PM ( j ) t j=
r ( t )

(1−t )
d .  On the

other  hand,  if  you  take  each  one  of  these  binomial  polynomials   if  you  take

∑
j∈ N

Pi ( j ) t j=
1

(1−t )
i+1
.  In  fact,  we  earlier  observed  that  Pi

 is  the  Hilbert  series  of  a

polynomial ring in i + 1 variables and this is exactly the Hilbert series of that polynomial

ring. So, this is one can check this directly. So, this is a Hilbert series of a polynomial ring

in ; i + 1 variables. So, this is the basic thing.
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So, therefore, if we take ∑
j∈ N

PM ( j ) t j=∑
i=0

n−1 ei (M )

(1−t )
i+1

=∑
i=0

n− 1 (1−t )
n−i −1 ei (M )

(1−t )
i+1

=
r ( t )

(1−t )
d
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So, if you multiply both sides we would get r ( t ) (1−t )
n−d

=∑
i=0

n−1

(1−t )
n−i −1 ei (M )

So, this is some polynomial; sn−d r (1− s )=∑ (s )
n− i−1 ei (M ). So, therefore, now let us rewrite

that thing. Therefore, for all i≥ d  e i (M )=0. Why? Because, since it is the coefficient of 1- t. 



So, this I am just writing to explain; i just go back to the. So, just it just an aside; all that we

want to say is that the if you write this if you think of 1−t as the variable. Then, it cannot

have  coefficients  in  small  degree  coefficient  of  (1−t )
n−1−i and  n−1−i<n−d that  is

coefficients for every exponent less than n - d is 0, that is all that we have used and this gives

us conclusion . So, that proves that statement.
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So, hence, we can write qM ( t )

(1−t )
d
=HM ( t )=

∑
i=0

n−1

(1−t )
n−i −1 ei (M )

(1−t )
d

+r1 ( t ) .

Remember  this  expression was  for  the generating  function  for  PM for  the non-negative

degrees that differs from the Hilbert series by some Laurent polynomial; where,  r1 (t ) is a

Laurent polynomial. 
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So, now what we need to clear; make the denominator same, then compare. So, therefore,

qM ( t )=∑
i=0

n− 1

(1−t )
n− i−1 ei (M )+r1 ( t ) (1−t )

d That is how the denominator the numerators would

look like. 

And  this  now  implies  that  qM (1 ),  all  of  these  terms  involve  a  1  -  t   this  is  the  proof

qm (1 )=ed−1 (M ).  So,  this  is  a  description  of  the  multiplicity.  This  quantity  is  called  the

multiplicity; this ed−1 (M ). 

So, it is the coefficient, it is the; it is the coefficient of the largest j such that the binomial

looking polynomial p j appears with a nonzero coefficient. So, this is what the multiplicity is

and now, we want to do to understand this for ideals for future in the next one or two lectures

applications towards projective geometry.
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So, proposition how would one do? So, one can of course, do this for modules also; but I do

not plan to do it to apply it in that generality and perhaps, the better intuition is there one

when one works just with ideals. 

So, now let I be a homogeneous ideal, , let I=. ∩
i=1

m

J i be an irredundant; meaning, the radicals

of the J i’s are pair wise distinct primes. 

There is no there are not; there are not two different  Ji’s with the same associated prime

irredundant primary decomposition.  we have ordered the J i assume that  dim (RI )=dim (
R
J i

)

for i=1,..,s and dim (
R
J i

)<dim( RI )    for s+1≤i≤m ok. So, we have arranged the J i. So, that

the first s of them are the ones which have maximum dimension and the rest of them have

smaller dimension.
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Then, their ed−1( RI )=∑
i=1

s

ed− 1(
R
J i

). So, sorry d here is the dimension of 
R
I

 .  

The other ones do not count in this calculation at all and we will see a geometric reason

behind this, once we go away. So, far, we have seen rings and ideals and correspondingly

somek n and algebraic varieties inside k n that is I mean we will change that picture a little bit.

Now, we will worry about what is called homogeneous prime spectrum and that will be there

we can see this I mean we will see what this means. And then, we will try we will see how

this can be computed quickly etcetera or at least some ways of computing them quickly; there

are other ways.
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So, this is what we want to prove.   let us split them by the dimension. Let J=. ∩
i=1

s

J i. So, this

is a primary decomposition of J and all of them have the same dimension, all the components

have the same dimension and J ’=. ∩
i= s+1

m

J i. 

So, then  
R
J

  and  dim (RJ )<d because all the components there have smaller dimension and

J∩J ’=I . 
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So, now, from exact sequence0→
R
J
→

R
J
⊕

R
J
'→

R
(J+J ' )

→0 , what do we know? So, we

know that this has smaller dimension. So, this one’s Hilbert series will grow at a I mean the

denominator would be 1 - t to some exponent which is less than d. 

For this, the Hilbert series will actually add because it is a direct sum. This one’s denominator

will be  (1−t )
d. This will be smaller because this dimension is smaller. I mean dimension of

this is less than d, this is a quotient; so, dimension of this is also less than d. 

The map is if we take some (a , b )→a−b  And here the map is some a→ (a, a ). So, this term

here and this term here have smaller dimension . 

So, if you write the Hilbert series of the middle term  So, that for simplicity let us call this

M ’= R
J
, M=

R
J
⊕

R
J
' and   M ’’=

R
(J +J ' )

. Then, HM ( t )=HM ’ (t )+HM ’ ’ (t )
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So, this is of the form some 
qM ’ (t )

(1−t )
d +

qM ’’ (t )

(1−t )
e , where, e < d . So, when we rewrite this thing,

we would get
qM ’ ( t )+ (1−t )

d−e qM ’’ ( t )

(1−t )
e

 and when we evaluate the numerator at 1,    this shows

that this thing here for the middle one. 

(Refer Slide Time: 24:04)

So,  the  multiplicity  of  
R
I

 is  same  as  the  multiplicity  of  this  sum.  This  implies  that



ed−1( RI )=∑
i=1

s

ed−1(
R
J i ). Now, repeat the same argument for the short for the direct sum. So,

that the direct sum give direct sum gives another short exact sequence .
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0→
R
J
→

R
J
⊕

R
J '

→
R
J '

→0; this is just projection maps. This is a projection map that is an

injection map to that factor. Again, for same dimension consideration, this part has smaller

dimension . So, by same considerations, ed−1( RJ )=ed− 1( RJ ⊕
R
J ’ )=ed− 1( RI )

But this is what we had said is we are already concluded is equal to 
R
I

. So, in other words, we

have removed all components from I of strictly smaller dimension. I mean one could have

argued that by removing one component also, this is just; but anyway we have now replaced

I, we can now replace I by J if you want and assume that all components of I have the same

dimension.
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Now, induct on s; s =1 implies that J=J 1. So, then there is nothing to prove.  s > 1 means

write  K=. ∩
i=1

s− 1

J i; then,  J=K ∩J s, all of them have the same dimension. Now, use the same

short exact sequence and conclude. 

Use the same I mean use the short exact sequence 0→
R
K
→ R

K
⊕

R
J s

→ R
K+J s

→0. Notice that

both of these have the same dimension as 
R
J

, but K+J s has to have smaller dimension.
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dim (
R

K+J s
)<d  since there cannot exist a prime p∈Spec R such that dim (Rp )=d  ,  K ⊂ pand

J s⊂ p . Because the minimal primes over these things all of them have the same dimension

are incomparable. So, if one has to contain at least two of them, then they must have positive

I mean it must have smaller dimension  So, this is what we need. 

So,  therefore,  now  induct.  So,  what  we  have  now  concluded  is  that  therefore,

ed−1( RJ )=ed− 1( RJ K )+ed−1(
R
J s

).  So,  we have  removed  we have  split  one  component  and

added this and now induct another (Refer Time: 28:09). So, this has applications towards

what is called degree of a projective variety, what we will define it and we will discuss that in

the relation of all of this and to projective geometry in the next few lectures, one or two

lectures.


