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Welcome, this is the 5th lecture in the series Computational Commutative Algebra and we

start off from where we stopped last time, which was that we want to prove the following



version of Hilbert Basis theorem which is; let k be a field and R polynomial ring over k then

R is Noetherian.

And as we said last time; it is not necessary to put a field here, one can take any Noetherian

ring.  But we will  as I mentioned in order to familiarize ourselves with some tools about

computational, techniques; we will restrict our proof to this thing. So, this is the version that

we want to prove. So, I want to give a brief outline of this proof it is little long.
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So, the first outline;  a first  step or one of the steps is  to prove what is called Dickson’s

lemma. So, what does this say? If Λ is a non empty collection of monomials in R.

Remember, R is the polynomial ring over k in n variables that is R=k [X 1 ,…, Xn ] and  this

notation is going to be used in this lecture and the next while we are discussing the proof of

this theorem; monomials in R, then; sorry maybe I should just say that  Λ be a non empty

collection of monomials in R. Then the set of minimal elements in Λ by divisibility is finite.

What does that mean? That is, there exists a finite subset Λ0 of Λ; such that for all mϵ Λ there

exist an m'
∈ Λ0 such that m' divides m. So these are monomials in the variables X 1 ,…, X n.

So,  under  divisibility  the  set  of  monomials  is  a  partial  order.  I  mean  there  are  pairs  of

monomials where neither would divide the other. So, it is not a total order and divisibility

gives an order. So, this gives a partial order. So, in any non empty collection of monomials;

the set of minimal elements is finite. So, this is Dickson’s lemma and we will prove this.
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So,  using  Dickson’s  lemma;  one  will  show  that  every  monomial  ideal  of  R  is  finitely

generated. We want to put that every ideal is finitely generated; at least we get a class where

all of them are finitely generated.

The next step is to convert the problem about an arbitrary ideal to a monomial ideal. For this,

we have to discuss what is called monomial orders, initial terms and initial ideals. So, given

an arbitrary ideal; we will construct what is called an initial ideal of I, which should be a

monomial ideal. 

So, this is the strategy. I will explain the notation once we get this far, but let us just say all

that one needs to know at this point is that this is a monomial ideal.

And this is finitely generated because any; every monomial ideal is finitely generated. Hence,

and then we will argue that this will imply that I is finitely generated. So, this is extremely

vague  outline  and  so  first  we  will  prove  Dickson’s  lemma  and  so  let  me  just  read  the

Dickson’s lemma again. 

So,  let  Λ be a non empty collection  of monomials  in  R;  R is  a polynomial  ring that  is

¿k [X1 ,…, X n]. And the divisibility of monomials give a partial order on the set of monomials

and ends also on  Λ and the set of minimal elements of  Λ is under divisibility ordered by

divisibility is finite.



So, there exist a  Λ0⊆ Λ which is finite such that for every  m∈ Λ, there exist an  m'
∈ Λ0;

which divides m. So, let us prove Dickson’s lemma.
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So, this is induct on n; if n is 1, so then R is just k [X1 ] and Λ is going to be just it is a set of

monomial; so it is going to be powers of X 1. So Λ={X1
a1 , X 2

a2 ,…} without loss of generality,

we can assume that a1<a2<a3<… a. 

So, in then we take Λ0={X 1
a1}, note that X 1

a1∨X 2
a j for every j≥1. So this solves the problem in

one variable.
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So, now let us assume that n>1 and assume that Dickson’s lemma holds for S which is the

polynomial ring in the first n−1 variables that is S=k [X 1 ,…,X n−1].

So, now we are given this  Λ; so, now let us construct a family a collection of monomials

inside S. So, Λ ' be the set of monomial μ in S, such that there exists j such that μ Xn
j
∈ Λ; so

mu involves only the first n minus 1 variables.

So, we are doing some sort of a projection to the first n−1 coordinates in; we can visualize it

that way if you want. So, now this is a collection of monomials in S; it has fewer number of

variables.  So,  Dickson’s  lemma applies  and this  now if;  so  let  J be  the  set  of  minimal

elements in this and it is a finite set. Let us call these things J={μ1 , μ2 ,…, μr} be the minimal

elements of Λ '; so this is induction. 

So, for all 1≤i≤r, let ji be such that μi Xn
ji∈ Λ'. Remember, μi are elements of Λ '; so that, by

that  they  must  exist  for  each  i;  there  must  exist  a  ji with  this  property.  So,  this  is  the

collection that we want.
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Let t=max ⁡{ ji∨1≤i≤r }. Now, for each 0≤i≤ t , let Ji be the set of minimal elements of the

following set which is {μmonomial in S∨μ Xn
i
∈ Λ }.

So, we have fixed an i here and then look at all monomials μ with that power of X n. So  this

is a collection of monomials in S; again by induction, it has a finite set. So, now to finish the

proof; it suffices to prove the following.
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Enough  to  show  that;  for  all  m∈ Λ,  there  exist  some  m' in  the  set

{μ1 X n
j1 , μ2 X n

j2 ,…, μn X n
j n⋃¿ i=0¿ t {μ Xn

i
∨¿ μ∈ J i}¿ such that m'

∨m.

This  set  is  not  necessarily  the  set  of  minimal  elements.  But  the  minimal  elements  will

definitely come from this, so the set of minimal elements is finite. I mean in other words, we

may have picked more elements in this set than necessary, but that is ; we just want to prove

that there exists a finite set.
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So, now let us prove that statement; so let m∈ Λ; so again μ is a monomial in S . So, now let

us look at the degree, let us consider two cases; if d ≤t , then let us go back here. So we are in

this set up. So, μ Xn
d is in this set and J i is the set of minimal elements. 

So, something in J i times X n
d must divide m, there exist μ'∈J d, such that μ'∨μ. Then μ' Xn

d

which is an element in this set; for i equals d; it will be in the set divides m. And if d>t; so

then there is, there exists i, such that μi which is an element of J; divides μ and this implies

that μi Xn
ji divides m.

So, this is going to divide m , in both these cases we have found something that divides m.

So, next we will prove that monomial ideals are finitely generated; assuming this that is not

very difficult proof and then we will go on to discussing monomial orders initial ideals and so

on.
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So, we now look at a corollary of the previous result Dickson’s lemma; so the corollaries is

the following; every monomial ideal of R is finitely generated. Remember, fg is for finitely

generated and the proof is in immediate comes; follows immediately from Dickson’s lemma

that I be a monomial ideal. So, what does that mean? It means that there exist a generating

set; G⊆U  consisting of monomials.
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So, by Dickson’s lemma; there exists a finite subset;  G0⊆G, such that for all monomials

m∈G, there exists a monomial m'∈G0 such that m'
∨m.



So, now let f ∈ I , then we can write f as f=∑
g i∈G

r i gi= ∑
g i
'
∈G0

r i gi where this gi∈G, but each of

them are monomials; so each gi is divisible by some gi
'  which is inside G0.

So,  in other  words;  I  is  generated by  G0.  So,  the next  step in the proof of Hilbert  basis

theorem, in the approach that were using is a way to reduce an for question about an arbitrary

ideal in the polynomial ring, to a monomial ideal in that polynomial ring right; so this is the

idea behind it.
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So remember that we are using a somewhat long proof of Hilbert basis theorem, so that we

can introduce these notions that are relevant to computational aspects. Otherwise, we could

have just proved it in more directly and a slightly general version. So, a total order; so this is

the definition which we will denote by greater than symbol; on the set of monomials of R .

So, just to remind ourselves; R is a polynomial ring, in some number of finite number of

variables and over a field; A total order ¿ is said to be monomial order or monomial ordering,

if two conditions are satisfied: (a) the monomial 1 which is just X 1
0 X2

0…X n
0, this is less than

or equal to m for all monomials m.

And of course, if m is different from 1, this is a strict inequality and (b) this order respects

multiplication of monomials that is for all,  m1<m2 and for all  m3,  m1m3<m2m3. So, this is

what a monomial ordering or monomial order means on the polynomial ring. So, we will look



at two examples; in fact, the second one is a variation of the first and I will put a few others in

the exercises.
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So, the first example that we want to look at is what is called lexicographic order. So, here; so

we have to define what the total order is. So this is the definition; so this is a monomial with

exponents and I will put a subscript lex to denote that we are referring; we are defining the

lex order, X 1
a1X 2

a2…X n
an ¿lex X 1

b1 X2
b2…Xn

bn X if a i>b i for the smallest i such that a i≠bi. 

So,  let  us look at  a quick example;  X 1
5 X2 and  X 1

5 X3
2.  So,  we can think of this  as in  the

polynomial ring in three variables. So, now let us look at the exponents, these exponents we

will call a i and these exponents we will call b i. So, a1 is 5; which is same thing as b1; so this i

is not 1 that is not the first time will they differ. Then a2 is 1 and here there is no b2; so this is

really X 2
0. So b2=0. .

Thus a2>b2. So, the first index where it differs is 2 and at that point a2 is bigger than b2. So,

therefore the; the condition, the relation is this is bigger than this in the lex order.
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So,  in  other  words  one can also view it  as  follows in other  words  .  If  you consider  the

following two elements in Zn and you take the difference, the exponent vector.

In this exponent vector, once you take the difference; it would be in  Zn; not the individual

elements are non negative integers, but the difference could have negative entries. So, in this;

the leftmost nonzero entry is positive; so that is one another way of thinking about lex order,

it is just restating what we said earlier and here is a curiosity X 1 is bigger than any monomial

here.

So this is really a remark; X 1 is bigger than any monomial m, for all m that does not involve

X 1. If m is a monomial in X 2 through X n; then that is always less than X 1; in fact, we can put

any power of X 1 also it will be true. So, this is just to get to; I mean understand why this is

true just to get used to thinking about these things.
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So, let us look at slightly related thing; related a monomial order called graded or sometimes

called degree lexicographic order. So, in the exercises, you will work out small problems to

understand why the word lexicographic comes in this.

So, now let us define a similar way we have to take two monomials; X 1
a1X 2

a2…X n
an  and so, we

will write G lex for this thing; to say graded lex and because that is the same symbol that, that

is the same phrase that Macaulay to uses; so we will try to be consistent with that. if we first

compare the degrees and the one that have higher degree wins and the degrees are same, then

we use ordinary lex; so, this is how it would be done. 

If the degree of the monomial is; so this degree is the usual degree variables have degree 1.

So X 1
a1X 2

a2…X n
an, take the sum and this is greater than the degree of degree of X 1

b1X 2
b2…X n

bn; so

that is the first condition or first check.

If this is true, then we define this to be greater in the lexicographic order or the degrees are

same; meaning the sum of the  a i’s is equal to the sum of the  b i’s and so this whole thing;

AND apply  system,  this  AND;  so  they  have  the  same degree  and this  one  is  the  usual

lexicographic order; this is bigger than that. So, let us just compare it I mean just take one

example .
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So, let us look at this. So, if you look at  X 1 and  X 2
2; we observed earlier that I mean X 1 is

bigger than any monomial that does not involve; bigger in the lex order that any monomial

that does not involve  X 1, so this is the relation between them. But, however when we do

graded lex; then this has a higher degree. So, then X 2
2 is higher in the graded lex than X 1. So,

let us look at how this is done in Macaulay. 
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So, here; we define a polynomial ring in three variables, but although in the example, I used

only two; R is a polynomial ring over the rationals in three variables X, Y and Z. So, what is



X 1 , X 2 , X 3? Well, X 1 , X 2 , X 3 are in the same order X 1 is X, X 2 is Y and X 3 is Z; so it is in that

order. And we specify that, we specify the monomial order like this; we write monomial

order and then equal to and a greater than sign which is read as gets. 

So, this is what is called an option to this command, this is ring construction command. So,

monomial order gets the value lex; so polynomial ring Q [X ,Y , Z ] monomial order gets lex.

So, this is how what is called options are specified and then we just ask  X+Y 2 and it just

writes X+Y 2.

So, what information can we get from this? Well, the way polynomials will be written in

Macaulay is in the decreasing order in the monomial order of the ring. So, X+Y 2 X is written

as X+Y 2because X is bigger than Y 2in lex order.
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So, now yeah; so now let us lo at a graded lex. So, we specify the same, same thing; except

monomial order gets the value Glex; so that is the term to specify that we want graded lex.

And then we enter the same polynomial X+Y 2, but it tells us Y 2
+X  because Y 2 is bigger than

X in the graded lex order. So, the way the polynomials are printed itself will tell us what the

the leading term of the initial term.

Well, the largest term in that monomial ah; it largest term in that polynomial is. So, just one

more; one more order what is called graded, this is an; is an extremely important for various

computational  purposes and also for,  it  has  much nice of  different  properties  in  lex.  So,



graded reverse lexicographic order ; which we will do in the exercises . So, that is the; so this

is the end of the 5th lecture.


