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So, the point of this lecture and eventually is to understand what does the Hilbert series look

like and how is it related at a course level to the Hilbert polynomial and we will make a

precise when we get there ok. 

So, recall that. So, R i=[ X1 , …, Xn ] k field and graded with deg ( X i )=1 for all i and M finitely

generated, then there is a Hilbert series of M H M ( t )=∑
j∈Z

rkk ( M j ) t
j
.
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So, then proposition; what does the Hilbert series look like? So, let d = dim(M); it could be

less than n then there exist a Laurent polynomial. So, what we will what this is mean this

means? So, this means that something of the form over. So, the Laurent polynomial over Z .

So,   ∑
i=N1

N2

ni t
i.N 1, N 2∈ Z. So, from sum exponent N 1 to sum exponent N 2 both of them could

be negative or positive or something they are just integers.

So, it is not a polynomial that is why it is called a Laurent polynomial and in this particular

case they are integers. So, it is . So, this is over Z, a Laurent polynomial which we will denote

by  qM ( t ).  So,  point  is  that  there  are  only  finitely  many  terms  it  might  involve  negative

exponents, but just only finitely many terms such that  H M ( t )=qM

(t )

(1− t )
n .

So, what does this mean? So, this one can be expanded as a formal as a power series . So,

what does this mean? (1−t )
n
=1+d t+

(− d ) (−d −1 )

2
! (−t )

2
+.. .. So, one can expand it like this.

o, then qM is a Laurent polynomial finitely many terms that times this will give I mean if d is

positive this will give an infinite term and that is what H M  will look like. So, this is just sorry

just is explain about that notation means.
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And, moreover  qM (1 )>0. We will see in the next proposition what does it mean ok. This is

the, this is the statement.  So, let us just read it again. d is the dimension then it can be written

as some Laurent polynomial divided by (1−t )
n. 

So, we have to allow for negative things here because M could be nonzero in some finitely

many negative degrees . So, we would allow for that. So, we can write it like this, but this has

the property that qM (1 )>0. 

So, in other words we cannot factor out (1−t ) from this again that is what it says because if

this was 0,  qM ( t )= (1-t)times something else and (1-t)would cancel one more term. So,

it says it cannot factor (1-t) from it anymore .

So, proof is induction on d. If d = 0 which means we are talking about a 0-dimensional

module. So, this now  says that M j=0  for all j with |j|> >0.

In other words, if you write the sum  H M ( t )=∑
j∈Z

rkk ( M j ) t
j
=qM (t )

 there are only finitely many terms in this one . qM (1 )=rk k ( M ) So, it is the rank of M as a k

vector space that itself is finite because of this condition . So, this is the d= 0 case. So, yeah.
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So,  d > 0. So, we will. So, address this in two steps first some special M and then the general

case will  be reduced to it.  There will be two ways to reduce the general case and I will

explain both. I mean they are independent proofs I will explain both because they involve

ideas that could be otherwise applicable. So, d > 0.

First  assume that there exist  some  f ∈m,   maximal  ideal  homogeneous that  is  a nonzero

divisor on M. So, we have done the following argument without loss of generality we can

assume that k is infinite. So, this I will put.

So, this has to do with so many problems in which we study about Hilbert functions we can

reduce this to this problem. So, this is similar to an argument that we had used earlier where

we had a polynomial ring over k and we had the polynomial ring in the same number of

variables over k bar and then we went back and forth using an argument.

So, with a similar sort of argument one can also reduce this that when we study when we

study Hilbert functions etcetera we can always replace k by k  for instance and assume that it

is infinite. Not all problems are where you replace k by k  there may be other ways where one

has to replace and still get infinite there are various techniques, but in this particular case we

can just take k equals to this k .

So, then so, this I will explain the exercises it is a slightly longest calculation. So, but if k=k,

so, notice that what does what do we mean by there is a nonzero divisor this implies that. So,



this implies this just this step implies that m⊄ . ∪
p∈ Ass ( M )

p .

We observed earlier that the nonzero divisors are all in some associated prime. I mean we use

prime avoidance for  slightly stronger statement  the reason is every nonzero; let  if f is a

nonzero divisor, then the ideal generated by f kills something. And, so, that is contained in

the annihilator of some element inside M and maximal things with that property are exactly

the associated primes. So, therefore,  f is contained in some associated prime.

So, that is and then conversely every p itself kills something. So, every element of p  is a

zero divisor. So, to say that there is a nonzero divisor is to say that there this is true, but now

we use k is infinite.
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Since  k  is  infinite.  So,  this  is  a  the  slightly  general  form  of  prime  avoidance.

m⊄m2
∪ . ∪

p∈ Ass ( M )

p

.
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In  other  words,  we can  find  a  nonzero  divisor  in  m∖m2 that  is  a  linear  form that  is  a

homogeneous linear polynomial sometimes called form..
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So, therefore, without loss of generality  deg(f) = 1 . So, now let us we want to consider

multiplication by f. So, if you take  map  M →f M  multiplication by f some homogeneous

some element m → fm. So, the deg( fm) = 1 + deg(m).

So, in other words, this is not a degree preserving map, but we can do one thing. We can shift



we can replace this by M(- 1). So, instead of doing this M (−1 ) → f M  multiplication by f. So,

now, this is degree preserving. The element of M here would now live in the next degree I

mean sort of artificially moving into the next degree and then m will go to fm, but deg( fm) =

deg(m).So, this is degree preserving.

So, we will keep this because remember for it  to Hilbert series to add we need this we need

degree preserving maps.
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So,  what  is  the  Hilbert  series  of  M(-1)?.

H M (− 1 ) (t )=∑
j∈Z

rkk ( M (−1 ) j ) t
j
=t∑

j∈Z

rkk ( M j ) t
j
=t H M ( t ) So, in general if  you shift the module

degrees by some a, we so, if you if you replace M by M(-a) we would get t a . So, that is what

we have.
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So,  therefore, from 0→ M (−1 ) → f M → M
fM

→0 short exact sequence. Now, we did this, this

is multiplication by f. Now, from the short exact sequence now, it is degree preserving we get

from the short exact sequence of degree preserving maps 

We get that t H M (t )+H M
f M

(t )=H M (t ) this is the middle one this is the outer two. So, from this

we conclude that H M ( t )=

H M
f M

( t )

(1−t )
 . So, we get this thing.
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So, we have checked earlier dim ( M
f M )=dim ( M ) −1=d −1 . So, therefore, H M

fm

( t )=

q M
fm

(t )

(1− t )
d − 1

from here if you just divide it by further (1-t) t therefore, we get H M ( t )=
qM ( t )

(1−t )
d  Laurent

polynomial did not change if you went modular nonzero divisor.

And, then so, therefore, q M
fm

( t )=qM (t ) and this proves that it does not vanish at 1 because by

induction this does not vanish here.  I mean by induction if you substitute 1 here we get

something positive. So, here also we will get something positive. So, this does the higher

dimensional case assuming that there is a nonzero divisor.
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So, now let us get to this case. In general, we want to reduce to this case. So, we want to

reduce to the case that there are  two methods. So, method 1. So, I will do both because they

are just sort of useful techniques that you might use it later or some other place.

So,  suppose  we  have  similarly  0→ N ’ →f N → N ’ ’ →0 short  exact  sequence  of  finitely

generated graded modules of the polynomial ring with degree preserving maps. So, hereafter

I might just say short exact sequence of graded modules and this will be understood that we

want we will keep by default we will shift these modules by some degree, so that maps are all

degree preserving suppose.

So, we need we want to say that  if you know the theorem for N’ and N’’, then we will know

it for N, how we will know it for N’ and N’’ is a different question. Let us let us do that. So,

if we take so, we need so, there are various quantities to be compared we need. So, what do

we know?
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We know that so, let e’ = dim(N’), e = dim(N), e’’ = dim(N’’). So,  what do the three Hilbert

series look like? One which would look like, H N ’ (t )=
qN ’ (t )

(1− t )
e ’

. The middle one will look we do not know what it is, but we are trying to prove that  
qN ( t )

(1− t )
e

we do not know that  this  is  true.  This is  the expected form and this  we assume that  the

theorem is known for N’ and N’’.

We know that the Hilbert functions are additive this we saw in the last lecture that degree

preserving maps means that the Hilbert series of M. So, therefore, so we let us assume that

we know the theorem for N’ and N’’. Assume that the result is known this is not a correct

argument because we have to check we are doing an induction on dimension. So, we have to

check that dimension is that is preserved, but right now I am just suggesting that if we can

check that how will we proceed. Assume that the result is known for N’ and N’’.
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So, then  H N (t )=
qN ’ (t )

(1− t )
e ’ +

qN ’ ’ (t )

(1− t )
e ’ ’  and this is so, we have to adjust   the exponent in the

denominator.

So, we can say (1−t )
max {e ’ , e ’ ’ } then depending on what whether this is the max or not it would

be some H N (t )=
(1− t )

a ’q N ’ (t )+(1−t )
a ’ ’ qN ’ ’ (t )

(1−t )
max{e ’ , e ’ ’ }

 where this where a ’=max {e ’ ,e ’ ’}− e ’and a ’ ’=max {e ’ , e ’ ’ }− e ’ ’ So, we would need to

adjust that so that the denominators are the same. So, we get something like this.

So, now let us go back. So, this is what we get. So, now, we can complete the proof if we

know something about dimension. Well, we know something about dimension that dimension

of N is equal to this number  and going back to the problem yeah. So, dimension of N is equal

to this number, then we can go backward.

So, note that at most one of a’, a’’ is nonzero because we are adjusting this to get to the max.

So, only one has to be adjusted . So, at most one of them is nonzero. So, therefore, so, we can

rewrite this is the potential candidate for qN  and this is the candidate for dimension. So, we

will keep this approach in mind.
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So,  note that the  Min ( N ’ )⊂ Ass ( N ’ )⊂ Ass ( N ) . In other words,  dim ( N ’ ) ≤ dim ( N ) because

dimension is  length  of  a  chain  be from some such prime to the to  a  maximal  ideal  and

definitely that will include this is because of this look at this condition.

And, N’’ is a quotient of N since N double prime is a quotient of N dim ( N ’ ’ ) ≤ dim ( N ) Now,

remember dimension is always counted by something from here. 

So, Min ( N )⊂ Ass ( N )⊂ Ass ( N ' )∪ Ass ( N ' ' ).

So, now, this implies that  dim ( M ) ≤ max {dim ( N ’ ) , dim ( N ’ ’ ) } because any chain from here

must appear either in this either in the supp(N’) or in the supp(N’’).
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So,  in  other  words  our  conclusion  is  that  therefore,

dim ( N ) ≤ max {dim ( N ’ ) , dim ( N ’ ’) ,dim ( N )} So, that we can actually use this thing here .  So,

once this is max then we this is the potential candidate for qN  . So, then we can do that.

So, therefore, now we can conclude that qN=(1− t )
a ’q N ’+(1−t )

a ’ ’ qN ’ ’

 and at most one of them is positive. So, therefore, q_N(1) is also positive because you will

not get 0 on both sides. 

If this is if a’ is positive then you will get 0 here, but you will get 1 here and so, this is

positive assuming the statement for N’ and N’’. So, it is enough to prove the theorem for

elements in for the outer two of a short exact sequence So, the conclusion is that enough to

show  that  the  result holds for the outer two modules maybe I should be more precise.
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Result holds for a submodule of M  and the corresponding quotient of M.
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So,  now use  a  prime filtration.  So,  we will  get  some  M i−1⊂M i →
R
p i

 we can  adjust  the

degrees to make this a short exact sequence of degree preserving maps. So, therefore, without

loss of generality and this every module has a finite prime filtration.

So, without loss of generality we can assume that M=
R
p

 for some homogeneous prime ideal



p , but now there is a nonzero divisor nonzero prime ideal p which is in a positive dimension .
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I mean if  p ≠ m 
R
p

  has a nonzero divisor and then we have reduced to the previous case

which we have already addressed in the case where the module has a nonzero divisor we have

already addressed.

So, another method so, this finishes the proof, but I just want to illustrate another method

which  goes  in  a  slightly  different,  but  still  useful  technique  which  is  the  following.  So,

suppose  M does not have a nonzero divisor.

 this implies this we observed earlier  m⊂ . ∪
p∈ Ass ( M )

p by prime avoidance prime avoidance.

m∈ Ass ( M )  contained in some associated prime therefore, m is associated.



(Refer Slide Time: 30:14)

So,  therefore,  there  exists  some  x∈M such  that  xm=0.  So,  now  we  can  consider  the

following ascending family.

What do we want? We want to take all elements { y∈M :mn y=0 } and this for n ≥1. So, if mn

kills then mn+1 also kills. So, this is an ascending family M is noetherian. So, write M^{st} for

the stable value. So, it has to be every element in  M st would be killed by some high large

enough power of m.
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So, M st  a finite length submodule of M and we will see saturation when we look at what is

called projective geometry yeah in a later lecture. So, M sat is a finite length sub module of

M which and moreover m∉ Ass(
M

M st )  because if this is associated then there is something in

this quotient which is killed by the maximal ideal. 

Therefore, something in M which is multiplied into M st by the maximal ideal, but then that

would have been multiplied it to 0 by some even larger power of maximal ideal. So, it would

have already been counted. So, m is not associated. So, which means that this implies that

M

M st
 has a nonzero divisor. 

 So, we take this one M st this is a finite length module.  since dim(M) >0,  M st is not equal to

M . So, the quotient is. So, this is a finite length module. Its Hilbert series is just a Laurent

polynomial.

If  you  substitute  t  =  1  we  will  definitely  get  something  positive.  We  have

0→ M st → M →
M

M st
→0.  So,  the  result  is  true  for  this  and then  we can  just  write  some

Laurent polynomial and then use a sum value here and if you substitute equals 1 we will get

something just.

So, in fact, we will you will see that when you work it out qM (1 )=q M

M st

(1 ). There is a reason

for this which we have not yet seen which we will see you know in the next proposition, at

least we will see in the next proposition for ideals not for all modules, but it is the same

reasoning will apply for all modules. So, this is the this is what we will conclude .

qM  is not equal to this, but when you substitute 1, the contribution from M st will go to 0

because of some terms. The H M  for this will have some denominator.  H M

M st
 will have some

denominator you have to multiply by that this is the Laurent polynomial.

I mean to make the denominators common you have to multiply by a power of 1 - t. So, this

will not contribute in this calculation I mean this will not contribute in this calculation. It will



contribute to qM , but not to qM (1 ) . So, that is the end of this yeah.

So, in the next lecture we will look at some geometric applications called proj of a ring then

use it to see some few cases of few basic situations of projective geometry. We will revisit

saturation at that point. And, then that the lecture after that we will try to convert arbitrary

non graded situation to a graded situation which also has a geometric meaning in terms of

spec and proj, it has a geometric meaning.

And, there are certain advantages of working with in the geometric in the graded case ok. So,

we will try to discuss them in the next two to three lectures.


