
Life
Computational Commutative Algebra

Prof. Manoj Kummini
Department of Mathematics

Chennai Mathematical Institute

Lecture – 48
Hilbert series – Part 1

(Refer Slide Time: 00:14) 

Welcome to lecture 48. In this lecture we look at the polynomial ring  R=k [X1 ,…, Xn ] and k

is a field and this is graded with  deg ( X i )=1 for all i. So, lot of arguments will go through

even if you do not assume in case of field we could generalize this to for example, Artinian

local rings or Artinian rings in some case we only need that k is Noetherian.

So, this is not the greatest generality that I am writing. I am writing this with so that you

know we can revisit our computational techniques with the new I mean with the increased

understanding of dimension etcetera. 

We  can  go  back  to  the  computational  techniques  and  also  because  these  now  have

applications  in geometry  so,  we will  try  to understand various  computations  that  we did

etcetera what it means in geometry in little bit more thoroughly or so, this is what we need

ok.



(Refer Slide Time: 01:34)

So, here is a graded this is a version of the graded Nakayama’s lemma. Suppose that M is

finitely generated. So, just maybe I should keep this. So, by m=( X1 ,…,X n ) the homogeneous

maximal ideal . 

And, we will see this I mean after this lecture that lot of our intuition about how local rings

Noetherian local ring  (R ,m )would behave sort of comes from or can be tested by working

with homogeneous modules, homogeneous ideals, this maximal ideal in that ring .

So, this is a good example not to just for computational setup or geometric setup, but also to

for us to sort of understand what would happen in the local case. This is just a meta principle

it is not a theorem, but the theory is sort of proceeds in parallel.



(Refer Slide Time: 02:58)

So, M finitely generated if mM=M then M= 0 and the proof is substantially simpler than the

local Nakayama case we will see now.  M is finitely generated.  by way of contradiction

assume M is not 0. 

Since M is finitely generated there exists a d such that M i=0 for all i < d and M d≠0. Look at

a set of homogeneous generators and among them pick the smallest degree that appear there.

So, that is this d, this is nonzero.
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So, let  x∈M d, but  M=mM .  So,  in other words there exists some m1 ,…,mn∈M  such that

x=X 1m1+...+Xnmn, but what are the degrees of these? Degrees of these is at least d. 

deg (m i )≥ d this implies that deg (m i)≥ d+1. So,  this part has degree greater than or equal to d

+ 1 while this has degree d and that is a contradiction and that is the end of the proof.

So, we see that the graded Nakayama lemma is substantially simpler than the  local version,

but the advantage I mean of knowing this result is that we can now redo what we did in the

local case which is the following. So, the following many things in the thing that we did
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So,  with notation as in the so,  proposition M finitely generated, then there exists graded

finitely  generated  free  modules  F1 and  F0  such  that  the  following  sequences  exact

F1→F0→M→0.  In  other  words,  M is  a  co-kernel  of  this  map  and  the  maps  preserve

degrees. 

This is the point that we can just take like this we will prove this, but we can take like this so

that under this map an element of degree k will go to degree k here and under this map under

same thing here these maps preserve degrees.
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So, proof. So, M and mM are graded. M is graded so, mM is also graded. So, let  us say

m1 ,…,ms∈M  be  homogeneous  elements  such  that  their  images  in  
M
mM

 form.  So,  the

homogeneous this is the key point here. 

Otherwise this is the argument as we did the same argument for finitely presented I mean

finitely generated is same as finitely presented over an Noetherian  ring  after that we will

refine that thing to say what how we can construct a minimal generating set. It is the same

argument, except we can now work with homogeneous elements.

The images will form a  k-basis. So, remember k is isomorphic to 
R
m

 as a graded k algebra or

a quotient of graded quotient of R from a k-basis of  this thing.
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Now, let {e1 ,…,es} be a set  and let deg (e i )=deg (mi ). Same as there are  things here. So, take

the same number of elements here and now, consider the free module generated by these

things. It is a free module, but now it is actually a graded module because each of them is not

just isomorphic to R, but the generating set itself is homogeneous. 

Now, .⊕
s
R ei→M→0and by graded Nakayama’s lemma this would be surjective that is that

any generating set for this basis will generate this is the same argument.  let me just say it

here. So, then M is equal to the submodule generated by them .

Look  at  the  submodule  generated  by  this  and  then  one  can  show  that  M  is  inside  the

submodule plus mM that is what the generating thing I will say. So, therefore, M is equal to

this. So, that argument is exactly that is the part where one has to use graded Nakayama’s

lemma. So, use graded this is just analogous to what we did in the local case.
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So,  we  get  a  map  like  this  and  this  is  this  map  preserves  degrees.  So,  this  is  the  first

observation. Now, repeat this for the kernel and that would give us a map as we asserted

finitely generated free modules which are themselves graded modules with a presentation

map. So, this is the end of this proof. So, graded Nakayama lemma comes exactly like this.
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So, now just some notation this is a frequently used notation. So, one should familiarize about

the concept that. So, M graded module,   j∈Z  .  then by M(j) we mean the graded module

with. 



So, as abstractly as an abelian group it is same as M, but what we have done is to shift it is

degrees. So, with [M ( j ) ]i=M j+i.  The reason  this notation is slightly counter intuitive and let

us check what that means.
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So, R (-1) is a rank 1 graded free module whose generator lives in degree 1 not in degree -1 .

So, the notation for the formula this is very convenient and therefore, in applications also it is

actually quite convenient, but one should keep this in mind R(-1) means rank 1 graded free

module whose generator lives in degree 1 and why is this? I mean why is that the notation.

So, if you take [R (−1) ]0=R− 1+0=0 [R (−1 ) ]1=R− 1+1=R0=k  this is where the generator as an

R-module comes and then so on.
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If you look at [R (−1 ) ]2=R− 1+2=R1 which is the k span of the polynomial ring linear span of

the X’S and so on. 

So, this is the free module of rank-1; I mean abstractly as an R module it is isomorphic to R

except  it  is  not  isomorphic  it  is  a  graded module because the generators  are  in  different

degrees. So, this is one thing that we should keep in mind our notation . So, in other words in

the  previous  presentation  matrix;  so,  back to  the  so,   let  us  say  M is  finitely  generated

m1 ,…,ms a set of homogeneous generators.
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Then, what in that previous how we can restate that previous statement is, if you take R, then

we shift by minus the degree of m_i, .⊕
i=1

s

R (−deg (m i) )→M .  e i→mi

So,  that is what we defined that has this degree.  So,  if I is a principal ideal. Let  f ∈Rd

homogeneous f ≠ 0 . Then (f) is isomorphic to R (−d ) as graded R-modules. Remember, this

is homogeneous of degree d. So, and why is that? Well, just use a presentation matrix we use.
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So,  we can.  So, we want to  present  we want to  find a  generating  set  for  that  one.  It  is

generated by f itself which has generate which has degree d. So, we take R(-d) and we get a

surjective map R (−d )→ ( f )→0. 

So, the generator of this one should not call it 1. It is not really 1; the generator is some

module element in some degree. So, let us call that basis e. So, e→f  that is what the map is. 

Now,  r e→0 meaning r e∈ker  . In other words; so, what would that say that would say that

r f = 0, but that would imply that r = 0 because now it is actually a multiplication happening

inside R. So, in other words this is injective and therefore, isomorphism I mean we defined

we started with the surjective map . So, this is one observation.
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And, let us say that let us just now consider  I=(X 1
2 , X1 X2 ) this is the ideal  So, this has a

generating set  of two elements both of which have degree 2. So, now, we can map a free

module one basis element for each mapping to I and this will be surjective . 

So, let us say the basis element here is  e1,e2 and we may as well we are free to choose we

may choose e1→X 1
2  and this e2→X 1X 2. We can choose, this is just a choice. So, but this is

not an isomorphism because the well the easiest way to well there are many ways.

One for example, so, let us call this map φ. If we choose X 2 e1− X1 e2 if you apply φ to this.

So,  X 1 has  come  out  because  that  is  in  R  and  this  map  is  R  linear  we  would  get

X 1φ (e1) – X 2φ (e2 )=X2 X 1
2− X1 X1 X 2=0.  So, this is not surjective it is not injective; so, not

injective not isomorphism.

And, it is not very surprising at all because another way to think about this whole thing is this

is a. If you invert all non-zero elements of R. Now, we are going outside the case of graded

things just invert all nonzero elements in R; R is a domain this is a field. So, this is a this

would be a rank-2 vector space over the fraction field I will give a rank because elements of I

have been now inverted.

So,  I  will  give  the  full  fraction  field,  but  rank  1  vector  space  and  we  cannot  have  an

isomorphism from the rank-2 vector space to a rank-1 vector space. So, again so, we say that



even after we invert elements the kernel is non-trivial; kernel is already to start with it is a

non trivial. So, this is just some notation about this thing and I. So, make a definition and then

just one basic property and then more important things we will do in the next lecture.
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So, definition M finitely generated. So, we are only assuming working for finitely generated

modules. The Hilbert series of . So, this is a formal series it is just what is called a generating

function. We will not need to worry about these terminologies. What is this . 

HM ( t )=∑
j∈Z

rkk (M j ) t
j
. So, M is finitely generated would imply that in each degree which is

finitely generated over the base field over R0 which is k. So, this is some number an integer

for  non-negative  integer.  So,  that  rank  times  t j.  So,  we  can  think  of  this  as  an  infinite

sequence.

So, first of all note that  M j=0 for all j < < 0. So, this starts from some value and then goes

up and it could be infinite depending on whether M itself is finite or not , but it does not go

into minus infinity it goes it might go into plus infinity.

So, this so, we can think of it as an infinite sequence of numbers that is captured together in a

formal series. Formal power series well it is not exactly a power series because it might also

involve t− 1 , t−2 etcetera, but in some formal object like that. So, that is what this thing it does.

So, it sort of captures the Hilbert function.



So, this is the value of the Hilbert function at j. So, it writes that function in terms of it is in

terms of a formal series that is all that it has done. Now, but in some sense it is easier to

manipulate this than just worry about the function as such, and that is the only reason why

this is preferred I mean this is sometimes preferred.
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So, an immediate observation relevant here is that if 0→M ’→M→M‘ ’→0is a short exact

sequence of  graded finitely generated R modules  and degree preserving homomorphisms .

Then the  HM ( t )=HM ’ (t )+HM ’ ’ (t )  that is because in each degree if you fix it to a degree the

rank of this is the sum of these two ranks and then we can just so proof. 
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For all j∈Z  rk (M j )=rk (M ’ j )+rk (M’ ’ j ) and so, then we are just multiplying by t j here  then

we take a sum over j of this quantity. So, that is the sum over this quantity  but the point is

that this is the formal thing. 

So, we do not have to worry about convergence or any of those things. So, this is formally

∑
j

rk (M j ) t
j
=∑

j

rk (M ’ j) t
j
+∑

j

rk (M’’ j ) t
j

 So, we can switch the order in which we are taking the sum it is just a ok. So, this is the; this

is the proof.

So, we will stop this lecture here and in the next lecture we will study this Hilbert series a

little bit more detail. 


