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So,  we apply  what  we learned  about  the  dimension  theory  of  Noetherian  local  rings  to

understand  polynomial  ring  over  a  field.  And  we  concluded  that  the  dimension  of  a

polynomial ring in n variables is n, where k is a field. This says that there exists a chain of

prime ideals. 
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Recall, we are in a domain, so 0 is a prime, and then 0⊊ p1⊊ p2⊊…⊊ pn. And we know one

choice which is just the variables. So, we could take this one to be x1, and then x1 ,…, x i and

then the whole domain all the variables here. So, there exists such a chain of prime ideals,

and every chain of primes has length less than or equal to n.
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But in fact, one can prove, so fact meaning this is a result that I am going to state I will only

sketch a proof and not sketch a proof in the sense that I leave the details as exercise to you.



The details themselves require proofs which and theorems which we could have proved, but

we have not. So, take this just as a general discussion. 

So, in fact, every saturated chain of primes in  k [x1 ,…, xn ], again k is a field has length n.

What  does saturated  mean here? So, this  means that  for such a chain  0⊊ p1⊊…⊊ pn one

cannot insert a prime between successive stages between pi and pi+1 for any i, so, that is what

we mean by saturated in other words we cannot add more elements into the chain. So, it has

to start from the 0 prime ideal, and end at a maximal ideal and no gaps in between in the

sense that.
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So, every saturated prime ideal has length has length n. So, this is what theorem this is a

property about polynomial rings over fields. And we will not be able to prove this because its

proof uses two other theorems. 

So, let me just briefly sketch what is behind the proof. It is a good thing to know even if you

have not seen the proofs of those results it is a good thing to know that those results exist.

So, the first step is, we need a stronger version of Noether normalization lemma. What does,

what do we need?
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So we need the following which is that. So, given chain of ideals not necessarily prime ideals

I 0⊊ I1⊊…⊊ Im not necessarily maximal or not necessarily saturated, there exists algebraically

independent  z1 ,…, zn inside R, R is a polynomial ring in n variables. Such that R is finite

over the usual statement about Noether normalization. So, let us call that ring A=k [z1 ,…, zn ]

.
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And I j∩ A=(z1 ,…, zh ( j )) for some integer h ( j). So, this is for all j. For all j, for all ideals in

that family when we contracted to this sub ring, we get the ideal generated by these initial



some number of variablesz1; z1 , z2; z1 , z2 , z3; need not be need not go one step at a time, it can

go I mean this h ( j+1) need not be h ( j )+1. So, it is just some function.

The way we have defined it, it is clearly weakly increasing because I j+1 contains this. So, the

contraction also has to contain, but this is something that we need. So, this stronger version of

Noether normalization is the one that is you that would that is this is one step of proof of this

theorem. So, this thing is proved in two sources I know.

So, for a proof of this version of Noether normalization lemma it is proved in Serre, local

algebra. And it is also proved in Eisenbud, the one that we had mentioned at the beginning

commutative  algebra  with  a  view  towards  algebraic  geometry.  So,  it  is  a  proof  of  that

statement is given in at least these two books. So, that, so we need to use this version. 

So, let us assume that theorem. So, then what do we know. So, let us look at this statement it

says that every chain of prime ideals in this has length n. So, now, we can think of it in other

way which is the way we will try to use now.
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So, let p be a prime ideal in R. So, let us just draw a picture this is a 0 prime ideal p contains

that  and  p  contains  some  maximal  ideal  m.  So,  this  is  containment.  So,  I  have  drawn

increasing to say larger and larger ideals. So, this containment like this. Now, what we are

trying to sketch is a proof of the fact that every chain from 0 to m. 



So, this is the maximal ideal, this is just prime. Every chain from 0 to m has the same length

n that is what we are trying prove. Suppose, it is true, then it would say that every chain from

0 to p, followed by a chain from p to m the length would be equal to n. 

For every chain because if there is some chain which was short here then you append that

chain to this side, and then you will get a shorter chain which is smaller than of length less

than n or the same thing here if there is a chain between p and m which is shorter. 

Then first start a chain from 0 to p, and then use the shorter one here we will get something

which is less than n. So, the conclusion of this thing is that every chain from 0 to p has the

same length, and every chain from p to m has the same length. In other words, the conclusion

is that so every chain, so let us write this. So, I will write here every chain from 0 to p has the

same length. Similarly, from p to m, so these two are ok, now this is true for every p.

So, one observation that we get immediately is that height of p which is the length of the

longest chain from 0 to p, they are all the same length. Dimension of p which is the length of

the longest chain from p to a maximal ideal containing p, but they are all the same length

because the total length is n.

So, ht p+dim
R
p
=n. So, a consequence of this thing that we are trying to prove is that this is

true for a p. Now, if this is true for every p, then it would say that every chain from 0 to

maximal ideal will have the same length, because suppose you take a shorter chain then take

a prime in between its height. So, this you will have to you have to go up one step at a time.
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So, the other direction  ht p+dim
R
p
=n. So, R is a polynomial ring for all p will imply that

every chain from 0 to a maximal ideal every saturated chain maximal ideal has the same

length n. So, this statement here is equivalent to what we are trying to prove. 

So, we will prove this statement. We will also see it in a slightly different way after we finish

the sketch of this proof. So, it is this equivalent version that we are trying to prove. So, now

let us apply. So, let p be in spec R.
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Now, for the chain 0 to p to maximal ideal for this find a Noether normalization A which is

some k [ z1 ,… zn ]⊆R such that p∩ A=( z1 ,…, zh) A  and m∩R=(z1 ,…, zn ) A. And 0 contracted

to A is anyway 0. So, we get such a relation.

Now, since A to R is integral finite. Notice that this one is easy to determine. This one has

height h in A, R is integral or maybe we do not need equality here just  e ≥h in A because

clearly there is a chain of primes ( z1 )⊊ ( z1 , z2 )⊊…⊊(z1 ,…, zh). So, there is at least this ideal

has a height at least h. R is integral, so which means that actually we do not particularly

(Refer Time: 15:16) ok. 

Height of p is less than or equal to height of (z1 ,…, zh) inside A. So, this we proved in you

know when we discussed integral extensions. So, if p contracts to A, A to R is integral, p

contracts to A then height of p is less than or equal to height of the contraction. So, this we

proved.
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So, now what is the picture? We have a p here and we have (z1 ,…, zh) here inside A. So, this

is inside R. And A to R is an integral map. Ok this contracts here. We wanted to show that

height of p is at least h. How would we prove that? Let us look at the chain of primes here.

So,  this  one  contains  (z1 ,…, zh−1) and  so  on  contains  (z1) and  contains  0  is  all  strict

containments. 



We have seen the going up theorem which said that if an ideal in the extension ring contract,

if let us draw the going up theorem. So, let us use slightly different notation.
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Let us call the rings S1 and S2 . This is integral extension of ok. And we have some p2⊇ p1

primes here. Some Q1 contracting to this, then so this is going up. 

We have a Q2 then there exists a Q2 such that Q2⊇Q1 and Q2 contracts to P2. So, the given

information is this chain here, and something in S2 that maps on to P1, then the chain goes up

that is what going up in this case.

So, now let us go back. what is the situation that we have here? We have R over A integral.

Here is a prime which contracts to this prime here. But here is a chain going down, can we

extend  it  to  a  chain  going  down  here?  So,  does  there  exist?  let  us  call  this  thing

Pl⊇Pl−1⊇P l−2…. So, that this contracts to here this is whatever here and then so on ok. So,

this is going down. 

So, this is if we can prove this then we will know that this has a length larger than this larger

than or equal to this. And hence we know that height of p is greater than the height of this.

So, this is what we need.
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So, what we need is step 2 is called going down theorem. So, I will not state the theorem it

require some hypothesis etc. So, what it says is given a chain like this; given a chain like this

and prime ideal here mapping to the first one the top most one, there is a chain going down

mapping successively to the lower ones. 

So, such a chain exists and what we need to use in the theorem so such a chain exists, so this

is the going down theorem. So, this is going down theorem for integral extensions there are

other going down theorems. 

And what one needs to use in addition to the statement of going up theorem, one has to use

the fact that this thing here is integrally closed in its field of fractions. So, that is necessary I

mean that is part of the hypothesis it would fail if we do not assume that the smaller ring is

integrally closed in its field of fractions. 

So, using that hypothesis, one has a going down theorem, and it says precisely such a chain

exist. Therefore, height of p is greater than the height of this. And therefore, it will give an

inequality in the other direction, and that would prove the statement I mean that will proof for

this p. So, this is the proof. So, this will prove the statement.

So, what I gave is just a very rough sketch of this argument. We need to prove the stronger

version of stronger version of Noether normalization lemma. We need to prove the going

down theorem. 



And after we prove these two statements, one can put the argument together one can fill in

the details of this argument and conclude that every chain of primes in every saturated chain

of primes and spec of a polynomial ring over a field is has length same length, length equal to

dimension of R. 

This is the general theorem that applies not to just to polynomial rings or algebras over fields.

It is sort of in the same generality as the going down going up theorem, you need some extra

hypothesis on the ring. But it is generally in that context ok, while the Noether normalization

lemma is about algebras that are finitely generated over fields, so that is just a brief because

this is a.

So, this is sorry I mentioned that I will discuss about some condition that is equivalent to this

that every saturated chain of primes has the same length. One condition we saw in the proof

which is this ht P+dim R
P

=n for all primes P it is equal that we saw.

Another condition its equivalent  to this  is the following which is that given  P⊆Q prime

ideals of k adjoint n variables k field every saturated chain from P to Q has the same length.
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Which is equal to ht (QP ) in the quotient ring 
R
P

 the height of 
Q
P

 in there. So, this is another

way of saying this, this same property of polynomial rings and often this nice property of



about spectrum that all chains between two points at the same length is sometimes useful in

various problems. 

Although we are in this  course we are unlikely  to  have to  use it,  but  it  is  an important

geometric property of some Noetherian rings, not all Noetherian rings have this property. 

So, now I want to change topic a little bit, and want to look at graded rings, I mean, mostly

we wanted to understand and use modules over. So, we wanted to understand. So, this is ok. 

We are  not  discussing  polynomial  rings  over  fields  or  generality  of  Noetherian  rings  in

anymore  we  will  concentrate  finitely  generated  graded  ideals  I  mean  modules  over

k [X1 ,…, X n]. And when we say graded we have to actually say what is the grading of the

ring in which degree of X i equals 1 for all i.

We can develop this slightly more generally without assuming this. We can just assume that

all  of  them are  positive,  but  it  is  sort  of  and I  mean  it  complicates  the  arguments,  but

ultimately  even in  that  case although we would not  discuss it  many of problems can be

reduced to some other ring in which this is true all the generators have the same degree. So, I

think as a first round of understanding this is good. So, in order to do this we will right now

discuss a little bit more general. So, we will assume that for now initially.
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We will  assume that  R is  a  Z-graded ring.  So,  the  polynomial  ring  with  that  grading  I

specified is actually non negatively graded k in degree 0, and all polynomials of positive

degree in positive degree, the natural degree notion of degree of a polynomial. But we may

have to work occasionally with Z-graded rings just in the initial setup. 

So, we will allow the initial parts we will develop in this generality. And in even over this we

will have to assume that M is Z-graded just for now.

So, this means that R=¿ i∈ Z Ri. So, this is R0. It decomposes like this with R iR j⊆R i+ j. So,

this says that R0 is a ring sub ring of R. Each R i is module over R0. 

This is not the first time we are seeing graded rings, but just to remind ourselves, what we are

assuming. This is not the first time we are seeing this, but just to remind ourselves what

where we are standing.
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So, now proposition let M be a graded R module, then and m∈M  a homogeneous element, in

other  words  m  belongs  to  one  of  the  summand.  So,  similar  to  this  there  is  M  also

decomposes,  and  R iM j⊆M i+ j.  Homogeneous  means  it  is  in  one  of  these  pieces.  So,  let

homogeneous element. Then the AnnR(m) is a homogeneous ideal or a graded ideal of R. 
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So, this is proof. So, let f ∈R be in the annihilator of m. The point about a graded ring is that

it can be written uniquely as f=∑
i=N1

N 2

f i in some finite range. So, let us call it N 1 to N 2. So, this

implies that ∑
i=N1

N2

( f im)=0. But each of these live in different degrees, the only way can be 0 is

that individually they are all 0.

And if for every f in this its homogeneous parts are in the ideal, then this would imply that we

can do this for every generator, and generator itself breaks up into its homogeneous parts. So,

we can actually get a generating set based on our homogeneous parts.
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So, in other words annihilator of m is homogeneous. So, we do this argument for every take a

generating set and then do this for every generator and then we would get this ok. So, an

immediate corollary is that associated primes of M. 

So, let us assume that R noetherian and R noetherian means M has an associated prime.

Associated primes of M are homogeneous ideals that is this because a little bit of working.

But if there is an annihilator of some element, we can actually break it up into annihilator of

homogeneous elements, and then maybe I should not have said it is an immediate corollary it

one can use the same argument to prove this statement. 

And another corollary is the following which is that M. So, now, let us assume M is finitely

generated in addition to R being noetherian. 
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Then we saw that then M has a prime filtration.  M=M l⊇M l−1⊇…⊇M1⊇M 0=0 which is

filtration  by  graded  sub modules  such that  
M i

M i−1

≅
R
Pi

.  Now,  this  is  a  graded  module  its

isomorphism for some graded prime ideal Pi.

So, this is slightly loose and we will see that a little later. We will not refine this statement.

All that at this point, I want to emphasize is that we could choose the sub modules to be

graded and so that this is true. This is not what is called a graded isomorphism. It is just an

isomorphism as modules, not isomorphism as graded modules which we will discuss just a

little later.

So, we will end this lecture now. And in the next lecture, we will continue discussing more

about the first topic that we want to discuss is the dimension theory of graded rings which we

will build from the dimension theory of noetherian local rings, what exactly do chains of

primes and support  of  M look like,  and then we will  use that,  and then we will  sort  of

specialize ourselves into the polynomial ring over a field situation.


