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Lecture – 44
Dimension of polynomial rings

Welcome. This is lecture 44 and in this thing we prove the following theorem. R noetherian,

then dim R [X ]=dim R+1. So, as a corollary we would then immediately see that dimension

of k [X 1 ,…, Xn ]=n where k is a field. This is a statement that we had wanted to prove a little

while from a little while ago.

But, we needed the statement that the previous the theorem for which we will need to use

things  that  we  learned  so  far.  We  need  to  use  Krull  principal  ideal  theorem  and  its

consequences. So, we did not need to develop the dimension theorem in it is in the way that

we are done, but this is one way of proving it.
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So, first before we go to the theorem let us start with some easy propositions. We will prove

the theorem at the end.
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Dimension of R [X ] even if R is any ring not necessarily noetherian any commutative ring,

then dimension of  R [X ] is at least I mean it is bigger than dimension of R. Why is that?

Proof let P0⊊…⊊Pl be a chain of primes in R.
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Then it is easy to check that P0R [ X ] ⊊…⊊P lR [ X ] ⊊P lR [X ]+(X ). So R [X ] modulo this ideal

would be  
R
Pl

[X ] or one can prove that they are isomorphic. So,  
R
Pl

 is a domain; therefore,

R
Pl

[X ] is a domain. Therefore,  R [X ]

Pl+(X )
 is also a domain. So, this is a prime ideal and after

this prime ideal we can put at least one more which is take this and the variable X .

So, this is a chain of primes in R [X ]. So, for every chain of chain there is a chain of length at

least one more. So, therefore, dim R [X ]>dim R. So, this is the general situation.
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So, we need one more lemma.  Let  Q1⊆Q2 be prime ideals  of  R [X ] such that  when we

contract them to R we get the same prime ideal of R. So, it is possible for example, we could

take, R could be a field and then R [X ] is a PID and if you take any irreducible polynomial

when you contract.

So, that is a nonzero ideal in R [X ] when you contract it you just get 0 because k is a field.

So, but of course, the 0 ideal of k [X ] also contracts to 0. So, if it is possible that there is a

pair of ideals with this containment with this property, this is not unusual.

Then the smaller one Q1 is the extended ideal. This is the prime, it is extended ideal is also a

prime in this case I mean extending to polynomials is still prime. So, if you have a pair like

this, then the smaller one with if you have a pair with this property, then the smaller one is

the extended ideal.

Proof: let P=Q1∩R=Q2∩R.
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Now, if we go modulo P then ok.
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So, then 
R
P

 is we can look at it this way. Inside here is 
Q2
PR [ X ]

 and 
Q1
PR [ X ]

. So, remember it is

R [X ]

PR [ X ]
. So both are from here and here this contracts to 0. That is the picture, but this is a

domain.
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So, invert every nonzero element of 
R
P

. So, we get the fraction field there of 
R
P

. So, we do

this in  
R
P

 and  
R
P

[X ]. If you invert nonzero elements inside here they do not intersect the

images of Q2 and Q1.

So, notice that no element of any way we just have to worry about  Q2 because that is the

bigger one no element of  Q2 is inverted I mean this  thing contracted to  
R
P

 is just 0. So,

nothing has been inverted in Q2 we are only inverting elements of R, but on both sides.
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So, then we get k which is a field. So, this is the fraction field k→k [X ] and then let us just

site a different symbol q2 and q1 both of them contracting to 0 here. This is the fraction field

and there is a containment like this.

But, then it is, but this is a PID, I did where did I say I am sorry one minute it has been equal.

This must be strictly smaller sorry, all these containments is strictly smaller. So, this q2⊆ q1

any will also be like this and, but this is the PID. If you have two prime ideals in a PID then

the smaller one must be 0. So, this one says that q1=0.

(Refer Slide Time: 08:38)



But, then when we walk backwards this just says that Q1=PR [X ]. So, this is the proof and as

an immediate corollary we can get the following which is still not good enough for us. That is

because if you take any ok.

So, proof if we take Q0⊊Q1⊊…⊊Q i. So, this will give a chain if you contract them chain of

length greater than or equal to 
l−1
2

  because three things in this together cannot contract to

something I mean if three distinct things in a chain cannot contract to the same P below. 

The previous one says only two of them can and that is what we get this the statement. So,

this is in the generality of arbitrary commutative rings this is all that one can say. So, now, we

go  back  to  this  theorem  if  R  is  noetherian  then  dimension  of  R [X ] is  one  more  than

dimension of R and as an immediate thing we see this corollary.
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So, proof of now we can just prove the theorem. Proof of theorem. So, we take a prime

Q⊆R [X ] and P is the contraction of that prime ideal into R. So, what we want to show is that

htQ ≤ht P+1. If we show this then well if we take any chain, then the supremum length will

be less than the supremum of these such things plus 1.

But then supremum of such things is dimension of R. 
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So, suppose we prove this, then for every chain Q0⊊Q1⊊…⊊Q l of primes in R [X ]. We get a

chain of length greater than or equal to l−1 in spec S. So, therefore, we take supremum of

such  l,  then  here  we will  get  supremum of  such  l−1.  So,  from this  we would  get  that

dimR [X ]≤dimR+1. The other inequality has already been established.

So, therefore, we want to show this. So, we are discussing something about height of some

two primes Q and P and to determine this we need to worry only about primes inside P. So,

we could just localize inside in R we could just invert everything outside P and do the same

thing in R [X ] just invert everything outside P.
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So, replace R by  RP and  R [X ] by  RP[X ] which is also the same thing as  (R ¿ )
−1R [X ] R

(Refer Time: 13:06). To assume that  (R ,m) is a local ring and  Q∩R=m.  So, this is the

reduction that we have done.
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And, we wanted to show that  ht Q ≤dim R+1 that is how we just translated this thing. So,

now, we induct on dimension of R. Dimension of R is 0, then  Q∩R=m. What about the

height of?
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So, now let us look at. So, now, we want to argue that height of  mR [X ] is 0. Why? If not

there exists some  Q '
⊊mR [X ] right this is not a minimal prime inside  R [X ], it is a prime.

What we have to claim here it is not a minimal prime inside R [X ], but what can this contract

to?

Well, it has to contract to a prime ideal, but there is only one in this assumption there is only

one prime ideal in R. So, this must be equal to m, but this contradicts.

So, this say that Q '⊇mR [X ] and this is the contradiction because we just said that it is proper

subset of R [X ]. I mean any ideal contains the extension of its contraction. So, this is just ok.

So, therefore, this that proves the statement that has been I mean because of this that has been

established.

So, now, let us look at height of Q. So, Q of course contains  mR [X ]. Suppose there is a Q

tilde here, but then all three of them will contract to mR [X ]. 
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This will imply that  Q∩R=
~
Q∩R=mR [ X ]∩R=m; three distinct things I mean in a chain

contracting to the same prime ideal contradicts the lemma. Therefore, there does not exist any

~
Q. Sorry, by this I did not write it, but by this I meant prime such that Q contracts to such that

Q properly contains ~Q and properly contains mR [X ].

And, now one can conclude therefore,  that any minimal  prime of any prime here has to

contract has to map to mR [X ], you cannot have three things in a row. So, any prime ideal

therefore, it will be  mR [X ] and then Q that is all therefore,  htQ=1. Then somewhere we

have assumed that Q is not mR [X ]; let us check that yeah if.

So, if Q is  mR [X ] then it is size 0 that we already checked. So, this proves the base case

dimension is 0.
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So, now let  us assume that  dimension of R is  positive.  So,  now, let  dim R=n>0,  take a

system of parameters. So, I mean and this is just one could have done using principal ideal

theorem, but it is equivalent saying that by of that dimension there is a system of parameters.

Let  us  write  sorry  not  X just  to  avoid  confusion  let  us  call  them  r1 ,r2 ,…, rn system of

parameters inside m, then write  R=
R
r1

. We know that dimension of R is dim R−1 and write

Q for the image of Q in R [X ]. Q contains r1 because Q contains m which contains r1.

So, therefore,  ht Q≤n=dim R+1. This is the induction statement height of Q is less than or

equal to dim R+1 which is what we wanted to prove. So, we can assume this for R and Q,

and htQ=dim R+1 which implies that Q is minimal.
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So, this is where we are using Krull’s theorems minimal over some  s2 ,…, sn+1∈Q. It is a

prime ideal of height at most n. So, it is minimal. So, these are  n+1 elements, these are n

elements.

So, now, this implies now that Q is minimal over r , s2 ,…, sn+1. This is inside Q. This ideal is

inside Q because r1 is in m. So, when we kill that we killed something inside Q. So, this now

implies that ht Q≤n+1 which is what we wanted to know.

So, now we have established the theorem which we mentioned at the beginning and hence

also the corollary. So, let us quickly look at one more statement about finite type algebra it is

over fields. So, now, at least we can go back to noether normalization.
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So, if we go back to noether normalization so, we have R finite type algebra over a field k.

Then  there  exists  z1 ,…, zd∈R z  1,  algebraically  independent  over  k  such  that

R⊇k [z1 ,…, zd ] is  finite.  Since  they  are  algebraically  independent  it  is  a  d-dimensional

polynomial ring.

Now, that we have established that there are d of them then their Krull dimension is d, R over

this is finite. So, this is what we had proved. So, and from this we are also by looking at

integral extensions, we had known that dimension of R equals dimension of this polynomial

ring. So, this was the d that came in the proof.

So, dimension of R is some integer and as many as whatever that integer d is that is the that is

exactly the large that is the largest number of algebraically independent elements that one can

find inside R and then at that point it is finite.
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So, in this context we can prove the following proposition. Suppose that R is finite type over

a field k meaning finitely generated as an algebra over a field k assume that R is a domain,

then dimension of R is the transcendence degree of the field of fractions of R. So, over little k

this is where Q (R) is the field of fractions. To talk about the field of fractions one has to be

in a domain. So, the proof is.
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Let  d=dim R, then there exists  z1 ,…, zd∈R algebraically independent over k such that the

polynomial  ring  generated  by  this  algebraically  independent  elements  sitting  inside  R is

finite.

So, now let us take the field of fractions here. So, let us call this ring A. Let us take the field

of fractions A inside here which means we inverted every nonzero polynomial in this. Well,

this thing to here whatever we get so let us just for now let us just write (A ¿ )
−1R. So, to go

from A to Q (A ), we just invert all nonzero elements of A.

But,  the  property  of  being  finite  or  the  property  of  being  integral  is  preserved  under

localization. So, this is finite. So, this is also finite. This is a domain and we already saw that

if you have a domain containing a field over which it  is finite,  then this is also. So, this

implies that is a field. This is a domain that is R was a domain and we just inverted some

nonzero elements of R and so, this is a field.

And, then one can check that it has to be the fraction field because R to this field there must

be a map and it must be same as a fraction field. It is first of all smaller than the fraction field

because we did not invert in theory we did not invert all the nonzero elements of R we only

inverted those of A, but it must have inverted everything because this is already a field. So,

check that.
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Check that if you take if you invert all nonzero elements inside A this is the fraction field. So,

this is the end of this proof.

So, in the next few lectures  we will  concentrate on homogeneous ideals over polynomial

rings over fields because they are more amenable to computations there are lot of things to

learn  from  that  and  then  we  will  maybe  a  lecture  also  more  about  generalities  about

polynomial rings over fields a property called a catenary which we will do without proofs.

Because there is more theorems to be proved, to prove that statement and we will not attempt

that, at least we will become familiar with the notion even without a proof. And, then in the

final  8  to  10  lectures  will  be  on  homological  algebra  what  else  can  we  use  these

computational techniques to what else can we learn about these things.


