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This is lecture 43 and we are continuing the proof of Krull’s theorem. So, this was from the

last lecture (R,m) noetherian local, M is finitely generated; then S(M ) which is the length of

a system of parameters  equals  δ (M ),  which is  the degree of Hilbert  Samuel  polynomial

equals dimension M, where whole dimension is defined as this.
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And in the proof, we were going to show the three inequalities in going in a circle. The first

one we had done in the previous lecture; this one we established in the last lecture, and now

we will prove this final part.
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So, this is proof of theorem continued. So, we want to show that,  S (M )≤dimM . So, now

because we know it is a finite number, we can induct and prove this statement. So, induct on

dimension M. If dimension of M is 0, then it says that M has finite length.
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Dimension of M is 0 means that, annihilator of M is M primary and therefore, length of this is

finite. So, in other words S (M )=0; in other words we do not need any x’s to make it, so that

the quotient is finite length. 

So, no need of any system of parameters, it is already finite length parameters. So, now, let us

assume dimension is positive and assume that it is true for all modules of smaller dimension. 
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So, now, let us take let P∈MinM . Then since dimM>0, P≠m. So, we can pick an x∈m¿;

we need to pick such x, so when you take 
M
xM

, we get some non-zero module. 

Because if you take just any x outside P, it could be an invertible element and if you would

do 
M
xM

, where x is an invertible element, we would just get 0. So, the reason to choose is we

want 
M
xM

 to be non-zero and we can actually do some induction. Now, let us look at.
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So, let, t=S ( MxM ); what is that say?.
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It says that, there exist some y1 ,…, y t∈m, such that λR(
M

xM+( y1 ,…, y t )M )<∞. So, this now

means that,  S(M ) cannot be longer than this, which is t+1, this is S( MxM )+1. So, but what

about this number by? Now, we need to ensure that, but if you kill M.
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And, what about dim
M
xM

? On the other hand dim
M
xM

<dimM  because if you choose a prime

ideal, this avoids a prime ideal below ok, sorry I got prime ideal, sorry.
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Let  us  choose  an  x  properly.  So,  let  {P1 ,…,Pr } be  all  the  minimal  primes,  such  that

dimM=dim R
P i

.

Remember the dimension of a module is the maximum of dimension of 
R
P

 as P runs over the

minimal primes; among them some of them are equality, and some of them might be smaller.

So, just pick the ones that have equality, do not care about anything else.

This is how we worked out in the previous example; we wanted to pick the start of a system

of parameters by avoiding primes that determine dimension. So, I had not picked that thing

here at this stage, we need to pick that way. By prime avoidance, ∃ x∈m¿ i=1¿ r Pi. This is

what prime avoidance said. 

If the ideal is not in a collection of finitely many prime ideals in any one of them, then it is

not there in the union. And there are strengthening of this; we do not need all of them to be

prime, which you must, I mean which you should have done in the exercises. So, there exist a

name with this property.
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Now,  for  such  an  x,  dim
M
xM

<dimM .  That  is  because  if  you need  a  prime  ideal  which

contains x and the annihilator of this, it cannot be one of these, because none of these contain

x. So, therefore, any chain in which goes from annihilator of this module, can be lengthened

by at least by one to get a chain inside, a chain containing annihilator of this. 

So, this dimension is strictly less than. So, now, therefore, induction applies for 
M
xM

 and so,

now, let us put these things together;  S (M )≤S ( MxM )+1≤dim M
xM

+1≤ dimM . By induction

this is less than or equal to dim
M
xM

+1, and because of this condition, this is less than or equal

to dim M, which is what we wanted to prove.

So, this proves the theorem and now we want to draw some corollaries of this theorem. One

of them is called. So, remember we have to do all these things to understand the dimension

theory of noetherian rings; we got motivated into this, because we wanted to understand what

is the dimension of polynomial ring over a finitely many variables over a field.

We believe that it should be, I mean it looks like it should be the number of variables; but we

need proper understanding of dimension to prove that statement. And this is a much more, I



mean much more general works in local rings etc; but we will need to use these things to

prove that, and you know needs a little bit more steps to finish that.
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So, now, let us draw an important corollary of this called Krull’s principle ideal theorem. So,

R noetherian,  x∈R; P prime ideal prime ideal that is minimal over  (x). Then  ht (P )≤1. I

mean one, maybe this is a believable statement;  but it is not, I mean at the generality of

noetherian rings, this needs a proof. 

So,  the way we will  prove it  is;  we will  just  derive it  as  an immediate  corollary  of  the

dimension theorem that we proved earlier.  There are other proofs; one can prove it more

directly without doing that much work, but some work has to be done, this is not a very

simple observation, it is not an immediate observation from other things. And in fact, it is

false for non noetherian rings. So, one has to use something, I mean some something about

noetherian rings in the proof.
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So,  now  let  us  proof  is,  I  mean  after  we  have  done  that  theorem;  this  proof  is  very

straightforward. So, we wanted to show that dimRP≤1. Notice that, ( x1 )RP is PRP- primary. 

Because there is nothing between; that is because the radical of this is PRP. In that local ring,

there  is  nothing  between  this  ideal;  there  is  no  prime  ideal  between  this  ideal  and  that

maximal ideal. So, this is √( x1 )RP=PRP; there are no other prime ideals, between these two

ideals this is minimal and use the fact that PRP is maximal in RP. So it is PRP primary.



(Refer Slide Time: 12:41)

So, this now implies that  S (RP )≤1 but we know that  S is same as dimension. Now, this is

equal to height. So, as I mentioned there are other proofs of this theorem; one such proof

without  going  to  the  Krull’s  dimension  theorem  is  given  in  Heisenberg’s  Commutative

Algebra book.
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So, another purpose, which is also building up from this; we need some property of prime

ideals, which we will need to use in polynomial rings. So, R noetherian, P is a prime ideal, n

some positive integer, then the following are equivalent; One, ht P ≤n and two, P is minimal



over an ideal generated by n elements. What is called principal ideal theorem is just when n

equals 1. We need this version to be used.
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So,  proof.  So,  1  implies  2.  1  says  that  ht P ≤n.  So,  this  means  that,  dimRP≤n;  choose

x1
s1
,…,

xn
sn

 such that the ideal generated by them, radical of this is  PRP, where  x i∈P and

si∉P; there could be units for this purpose. So, this is for all. So, in the localization, there is

such a ideal; this is again using the theorem.
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So, now, let  I=(x1 ,…, xn) in R. Then of course,  I R P=(
x1
s1
,…,

xn
sn )RP;  because these are

anyway units in this ring, so whether they are inside or not it is immaterial. 

Now, what is the claim is that P is minimal over I. By way of contradiction, assume there

exist a prime Q such that I ⊆Q⊊P. So, P is not a minimal over I.
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Then this one would imply that I R P⊆QRP⊊PRP and that is a contradiction. So, this proves

that P must be minimal. So, take any system of parameters in the local ring. 

So, there will be fractions; just look at the numerators and look at the ideal generated by that

and that is enough. That would generate, it would be minimal over P, just, maybe I will just

mark put as a note, we do not know that ht I=ht P. Remember we are not saying height of P

is n; it is just less than or equal to n. It is possible that there is some P'⊇ I , but P'⊈P. So,

once you localize P' became the whole ring, that will one would not see P' in the local ring at

RP; but there might be some P' of smaller height. 

So, there is, ok. So, we are not saying anything about height of I. This is that we just proved 2

implies 1, this is just. So, P minimal over (x1 ,…, xn) implies that, height of P which is equal

to dimension of RP, which is equal to which is less than or equal to n.
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Because again the same reason, these things form a system of; I mean these things form

something m-primary, something primary to the maximal ideal is in this local ring and that

should that cannot be greater than n then. So, this is the end of this.
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So, one more proposition. So, this is the choice of x that we made in the proof. So the same

notation as a theorem (R,m) noetherian and M finitely generated. 



And x∈m {P ¿ where P∈MinM  and dim
R
P

=dimM . So, an x with which you can actually

cut dimension; so we just observed that, then dim
M
xM

=dimM−¿1.

So, in the proof of the theorem we used that dimension of 
M
xM

 is strictly less than dimension

of M and that is how we built  the induction; but it is in fact equal to  dimM−1.  That is

because, if you go back to the idea behind the proof of theorem; we have to pick such an x, if

you want to start constructing a system of parameters we have to pick such an x. 

So, this is what we want. So, we will use the observation that we already made which is that,

this is less than or equal to. So, we will just prove the other inequality.
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So, proof, we already saw that  dim
M
xM

<dimM  that is we used in the proof of the main

theorem. So, we just have to prove that dimension of M is less than or equal to this plus 1.

So, let x2 ,…, x s be a system of parameters for 
M
xM

. So, this now means that, dim
M
xM

=s−1.

So, this is where we are using the theorem; there are s−1elements.
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Now, if you choose therefore,  λR(
M

( x , x2 ,…, x s) )<∞ which implies that  S (M )≤s. But this is

by  the  theorem  S (M )=dimM  and  s=dim
M
xM

+1 which  is  what  we  wanted  to  prove

dimension is less than this and we already proved the other inequality. So, this proves that.

So, this is a statement that is not; I mean that is sort of in, that is not counter intuitive. In the

sense that, if you choose some element, you know in fact most elements, then when you go

modulo that the dimension will go down. So, you can think of it as, in geometrically one can

think of it  as; if you have someZ ( I ),  then if  you impose one more condition and if that

condition is sort of independent, then the size of Z (mod I ) will come down. 

Remember  dimension of  M or  the  is;  I  mean it  is  a  subset  of  spec and that  is  one can

analogously  think  of  it  as  Z ( I ) for  some  ideal.  So,  as  you  as  we  kill  more  and  more

equations, the solution set will come down. 

And if you choose; at each stage if you choose a general enough equation, the solution set as,

solution sets dimension whatever it means comes down one step and one at a time. So, that is

what this theorem is this proposition is saying; but although it is not counter intuitive, it still

needed some amount of work to prove that statement.
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So, this time I chose a different field,  some a very big field with 32749; this  is a prime

number, this is the largest prime number that I call it to handles or maybe sorry, I do not

know what the latest version the largest prime number is bigger, but you know for some time

this used to be the largest prime number. So, this is a large enough field and I will explain

why it is necessary to choose a large enough field, polynomial ring in two variables. 

And here  is  an  equation  that  we saw we  did  our  saturation  example  by  hand,  by  hand

meaning with the help of macaulay with this thing; (xz− y2 , x3− yz). And we know already

that we had identified these minimal primes. But if you go back few lectures ago. But one

part was easy that we observed, (x , y ) is minimal prime which contains this. 

And we also already observe that  anything that,  in that  lecture  we already observed that

anything  that  is  not  this  prime  minimum must  contain  x  and y.  So,  these  two are  only

minimal  primes  and  we  also  proved  that  this  is  the  kernel  of  a  map  from

k [ x , y , z ]→k [t 3 , t4 , t5]. So, this is also a prime. So, this is, but anyway we just; in this case I

just asked macaulay to calculate this.
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Let us, now, we would like to find, we would like to find a system of parameters; but the

point of this example is, it is actually not at all difficult to find. If you choose any linear

homogeneous polynomial not inside (x , y ); then we will get the first element in the system of

parameters, because of course we cannot choose anything inside (x , y ).
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And I chose linear because; see in this polynomial, this prime does not contain any linear,

linear homogeneous polynomials. In homogeneous, we will have to check a little bit; I mean

it  will  not  contain,  but  we  have  to  check  it  with  a  little  bit  more  difficulty.  Linear



homogeneous just by looking at these terms it is ok; this is already inside the square of the

ideal (x , y , z), and hence it cannot contain anything which is linear, which needs to involve

x, y and z, linear terms x, y and z, right. 

So, for example, we could choose z; let us kill z and then ask for the ideal generated by the

minimal primes, we just get (z , y2 , x3). Let us check here. So, if you sorry, here if you kill z,

we get a y2; because z will get an x3 and then there is a z. So, that explains this thing. So,

R
I+ z

 has finite length. 

So, therefore, we just need. So, the dimension of this ring; again when we say dimension of

this  ring,  we  mean  dimension  of  this  ring  localized  at  the  homogeneous  maximal  ideal

(x , y , z). We do not need to worry about homogeneity in this problem; but at the maximal

ideal generated by the variables.
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So, in general if you ask for a general linear polynomial in this sort of situations, it will not be

in any finite collection of ideals. So, this goes back to prime avoidance theorem and this is

was an exercise; if the field is large enough. So, typically large enough means infinite; I mean

for sure it will work in infinite fields. In this particular case, this 32749 was also large enough

characteristic that; so we can just look at this thing here. I will take a random element of

degree 1 in R. So, I got x+6427 y+12536 z.



So, the point is that random element; I mean most likely, of course we cannot we ask for

random element, macaulay generates it through some random number generator, there are no

true random number generators, these are all. So, it may. So, end up that the random element

does not involve z and then we know, it would not work. 

But if you do random; if you run this command enough number of times; then most of those

times you will get an element which involves z. And in this particular example as soon as this

linear polynomial involves z that would be enough as a system of parameters. So, that is the

thing. 

So, this is a typical thing that one does in macaulay that, if you just work; if you do this, if

you want to identify a system of parameters or something or if you want to find a general

polynomial, we would just run the random command enough times. And whatever is true for

general, will hopefully be true most of the times in this running of random command. 

And just because it is not immediate from here that this ideal is; just by looking at this is not

immediate that this ideal is m-primary, a primary to the ideal generated by the variables. So,

we just ask for the lead terms in sum Grobner base thing and we get (x , y2 , y z2 , z4). So, this

is finite length.

So, in the next lecture, we will use these ideas; we will use not the example, but the Krull

principal ideal theorem to and the characterization of height in terms of being minimal over

some number of elements. We will use that to prove that for a noetherian ring R, dimension

of R [X ] is 1+dim R.


