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So, in this lecture we begin by looking at systems of parameters and then we will prove the

Krull’s theorem about relating three things dimension of a module δ (M ) which is degree of a

Hilbert-Samuel  polynomial  and  s(M ) which is the length of a system of parameters.  So,

proposition. So, throughout again in this whole lecture (R ,m) is noetherian and M is finitely

generated R module and we will not explicitly state this all the time except maybe stating

when we state the theorem. 

So, another proposition  s(M ) which is the minimum number s such that there exist some

x1 ,…, x s so that 
M

( x1 , .. , xs)M
 has finite length. So, called the system of parameters of for M.

So  s (M ) ≥δ (M ) which is degree of a Hilbert-Samuel polynomial for any ideal m-primary

ideal I irrespective of the ideal. 
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So, we can determine  δ (M ) by looking at  PI ,M . So, we will try to use something that is

convenient for us. So, let  x1 ,…, x s∈m be such that  
M

(x )M
. So, I will just put underline to

denote all the x’s together times M , the length of this module is finite. 

So,  it  is  enough to show that  δ (M )≤ s.  If  this  is  the case then the minimum of all  such

possible also will be greater than or equal to this if this is true for every s. So, this is what we

want to show. So, we would like to choose some convenient I construct with respect to a

generating set for that I and then conclude this.

So, let I=AnnM+(x) and it will be an exercise to check that this I is an m-primary. In fact, a

sequence like this will have this property if and only if annihilator M plus that ideal generated

by that sequence is m-primary. 

So, exercise √ I=m. So, we can we can try to determine δ (M ) by looking at PI ,M  for this I.

So, how would we do this we first have to write the associated graded ring as a quotient of a

polynomial ring. 
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Associated ring for I. So, I need to write the associated graded ring of R as a quotient of a

finitely generated polynomial ring and then M is finitely generated over it. I mean that is

sorry, not the associated graded ring associated graded module of M is finitely generated over

it and then we will use the property about the Hilbert function of such a module. 

So, in order to write this we have to make a choice a choice of generators of M. So, we will

choose the following. So, let x1 ,…, x s , ys+1 ,…, yt and these y’s from the annihilator of M.

So, take the x’s and generators for this need not be a minimal generating set for I, but that is

just need to take some generating set be a generating set of I it need not be minimal, but that

is fine.
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So, now we can get the associated graded ring of R as a quotient of 
R
I
[X 1 ,…, X s ,Y 1 ,…,Y t ],

these are variables. What is the map? The map is the variable X i goes to the element x imod I
2

. So, this is the degree one part of.

Remember this is in degree 1 of the associated graded ring and Y i similarly, goes to y imod I
2.

So, we get a polynomial ring and the associated graded module is a module over this. So,

therefore, gr I (M ) is annihilated by Y s+1 ,…,Y t.
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Because if we take an element in this it is the residue class of some element of the module on

Y i acts as y i and what is the multiplication y i times some m  where m is an element inside

here M is just y im, but y im=0. So, these elements are annihilated by this.

Therefore, gr I (M ) is a finitely generated graded module over the over the quotient ring. So,

this  polynomial  ring  modulo  the  Y’s  because  they  anyway  kill  over  that  is

R
I

[X1 ,…, X s , Y s+1 ,…,Y t ]

(Y s+1 ,…,Y t )

.
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But, this is also a polynomial ring recall that this is also 
R
I
[X 1 ,…, X s]. So, associated graded

ring is a finitely generated module over this ring that is the observation. Of course, we cannot

change this to X’s. Here we are using I it is just we only need the generators of the generators

corresponding  to  the  system  of  parameters  and  not  for  the  an  annihilator  that  is  the

observation that we want to make .

Then this one says that the Hilbert polynomial of the associated graded ring of M has degree

at most s−1.
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Therefore, the Hilbert-Samuel polynomial of M with respect to I has degree at most s. This

now implies that δ (M )≤ s. So, in Krull’s theorem this is one step, but we will we want to look

at some quick examples in Macaulay before we prove the theorem Krull’s theorem. 
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So, now let us look at these this example. So, the first example. So, we have seen variations I

mean these ideals earlier. So, the in the input we take some field adjoint two variables and we

look at the ideal generated by  x2 , xy. What we wanted to consider is the the modulus the



quotient ring, but it is a little difficult see some of these functions are not defined for quotient

rings. They are defined for ideals and modules. 

We have to each time we construct a quotient ring we have to tell Macaulay to convert it to a

module etc these are just changing their  types. So, instead of worrying about all of these

things we will just worry about the minimal just work directly in R, it is equivalent anyway.
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So, we ask for minimal primes of I , we have computed this earlier any prime must contain x

because of x2 and (x) itself is a prime ideal in R. So, it is a primary ideal in the quotient and

therefore, it is the minimum prime. We are searching for a way to find systems of parameters

or what would be a system of parameters for M. So, we have to do some x1 ,…, x s. So, let us

start with x1=x.

So, we ask 
R
I+ (x )

. So, this is not it did not; it did not minimize the generators we just give

that way. So, here I just ask. So, it has not found minimal generator. So, I ask to find the

minimal generators of I+(x ) and then construct the ideal from that.
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So, then if we ask that this is the output it says output is 
R

(x )
 which is what we expected. So,

if we choose x1 equals x then we will need to choose some other x2, for example, y because

R
(x )

 is isomorphic to k [ y ]. So, we need to use something so that the quotient is a finite length

module. I mean k [ y ] is not a finite length R modulo. 

So, we have to choose two things if we started this way at least two things. In fact, only two

things, but on the other hand if we choose x1 to be y. So, let us check that thing. So, we ask

the same thing I just add the ideal take min gens and then construct the ideal. 



(Refer Slide Time: 12:15)

So, we would get ( y , x2). So, we got one element. So, therefore, the this is s(M ) in this case

M being 
R
I

 is at is at most one. But, on the other hand, 
R
I

 itself is not a finite length because

we know that if this has finite length then it would be a finite dimensional vector space, but in

this case every power of y remains in the quotient. 

So, it is not a finite length. So, we need to go modulo at least one element and in this case we

have found one element. So, we are done. So, that says s (R )=1. 
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Now, let us ask why did choosing x1 fail? So, the reason why it failed is that choice of  x1

belongs to a  minimal  prime which determines  dimension of  
R
I

 in  other  words  from this

minimal prime to a maximal ideal there is one of maximum length that is you start with (x)

and then go to (x , y ). So, there is one. 

So, there is a chain of primes that starts at  (x) and then attains the supreme of lengths of

change of primes. So, therefore, that is the reason why this failed. So, one thing to note at this

point is we did this for the polynomial ring, but we chose elements inside the maximal ideal

( x , y ) all throughout. 

So, that if you just  localized at the maximal  ideal  ( x , y ) we would have gotten the same

conclusion and there is this; there is this going back and forth between local rings like this or

and graded rings which we will explore after we prove these results for. And, that is crucial to

build some intuition about various things. So, we will have couple of lectures on doing that

thing and this and all the more.

So, because macaulay2 is or any computational algebra system is very I mean is more adept

at handling a graded situation than handling an arbitrary ring. So, therefore, we will do this

translation between graded case and local case on and off and we will go over it in detail

later. 

So, but in this particular case it is easy to see that if you have done the same calculations over

the local ring we would have got the same result. Now we joined three variables and take the

ideal (xy , xz ) , this it is minimal primes are ( y , z) and (x).

So, the first generator says x must be in it or y must be in it. Second one says x must be in it

or z must be in it; therefore, if x is not there in a minimal prime in any prime then y,z must be

there. So, that is the only minimal prime.
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So, we already observed that there is no point picking elements inside a minimal prime that

determines dimension. So, here there are two minimal primes; here there are two minimal

primes here there are two minimal primes one from this minimal prime (x) there is a chain of

length at least two which is (x , y ) and (x , y , z).

Well, here we can probably so, any prime ideal containing yz must correspond to a prime

ideal in  k [x ] when  k [x ] is PID. So, we can only have 0 or maximal ideals. So, any chain

from here to a maximal ideal we will have length at most 1, this and the maximal ideal as

opposed to this there is one at least 2. So, we should probably avoid this and we should pick

one from there. So, that is what we are saying here.

So, we have to avoid x. So, we could pick something in the other prime. So, we could pick

for example, y and then if we add that we will get  ( y , xz) then we ask for it is minimal

primes. So, this is considered as a quotient ring of R and if you ask ideal of a quotient ring it

would give the ideal for which it was quotient by. So, it just showed up it just said what that

ideal is which is just this ideal ( y , xz)minimal primes over that.

So, now, we see that we cannot pick any monomial because every monomial in R must be in

these two ideals right. If it is divisible by x it will be inside here; if it is not divisible by x it

has to be divisible by y or z, I mean a monomial different from 1 therefore, it must be inside

here.
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So, we cannot choose a monomial as x2. So, these are every monomial is in this ideal. So, we

could try x+z, then we ask  R mod ideal mingens I plus the ideal generated by y and x+z and

that gives ( y , x+ z , z2) square it rearranges some term. And, this we can see leading term of

this is y, leading term of this is x and this is the monomial. So, its own leading term. 

So, x, y and z are leading term, xy and the power of z are leading terms and this is finite

length. So, we have picked a system of parameters y and x+z. So, this is third example we

will discuss after we prove the theorem and I think. 

(Refer Slide Time: 18:40)



So,  let  us  state  the  theorem.  This  is  Krull  (R ,m) noetherian  M finitely  generated  then

s (M )=δ (M )=dimM ,  s(M ) which is the length of a system of parameters on M is equal to

δ (M ) which is a degree of Hilbert Samuel polynomial PI ,M  for any m-primary ideal I equals

the Krull dimension of M and what is dim M? dimM=dim
R

Ann (M )

So, this is we have said what dimension of quotient rings are chain of primes in that quotient.

So, this is the theorem. Just a remark just to warm up for the proof. 

See in the examples there is macaulay that we saw we said we had to take an element when

we are constructing a system of parameter, we have to take an element that avoids primes that

are that determine dimension so that each time you go modulo you know the beginning of a

system of parameters in appropriate choice will also ensure that dimension goes down.

Hopefully, I mean one can use this to prove the theorem except there is one catch that we so,

we could use this probably to prove by induction on dimension except one catch which is that

we do not know yet whether dimension is finite. It is only after we prove the theorem or the

first part of the proof of the theorem that we will know that, only then we can induct on

dimension, but that is we will need to use it. So, that is one. 

So, the idea of going modulo the beginning of a system of parameters progressively has the

effect of cutting down dimension. The only point is that we have to ensure that dimension

comes down to 0, when we are stuck when we cannot find any more system of parameters

that is. So, that we will need to prove I mean we will need to prove an equivalent statement.

So, now, let us prove the theorem. 
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So, we will prove three statements which is one which we have already proved. We will

prove that  dimM ≤δ (M ) but the degree is independent less than or equal to. We already

proved that this is less than or equal to s(M ) this we already proved and then finally, we will

prove that s (M ) ≤dimM .

So, the three inequalities if we prove we will finish. So, we will prove these things. We will

prove these two, this already done. So, let us prove this let us prove this and this. So, we

know that this is a finite number because it is a degree of a polynomial. We know that s(M )

is  a  finite  number  because  maximal  ideal  is  finitely  generated  and  definitely  system  of

parameters cannot have length greater than or equal to a generating set of maximal ideal.

So, these two quantities are finite δ (M ) and s(M ), this will ensure that dim is also finite and

then we will be able to do induction using them. So, this is induct on δ  what does that mean.

So, when would δ (M )=0 . So, this function n going to may be .
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So, δ (M )=0 means that this implies that the function which takes n to the length of 
M
I nM

 is

eventually  constant  that  this  is  just  because  a  polynomial  has  degree  0.  So,  this  is  an

eventually mean for all n much larger than 0, it is constant.
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But,  that  would  imply  that  I n+1M=InM  for  all  n  sufficiently  large.  But,  this  is  just

I ( I nM )=InM . So, this is inside the maximal ideal; some proper ideal over and this is finitely



generated.  So,  this  is  inside  the  maximal  ideal  this  is  finitely  generated  therefore,  by

Nakayama lemma I nM=0 for all sufficiently large n.
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In other words, I n⊆ AnnM  for all sufficiently large n or in other words, the annihilator of M

is m-primary and M is finitely generated. So, M is artinian and this implies that dimension of

M is 0. So, the inequality is preserved both are 0 if this is 0 then this is also 0 remember we

are trying to prove this. So, if the right hand side is 0 left hand side is also 0, that is the first

that is the base case.
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So, now assume that δ (M )>0. If dimM=0, then there is nothing to prove. So, if it is not or

maybe M ring. There exists so, notice that there exists p∈MinM  such that dimM=dim R
p

.

That is because dimension of a module is the dimension of 
R

AnnM
 and minimal prime over

M means minimal prime at which M p is nonzero. 

So, therefore, those are exactly this they will be minimal prime in R mod minimum prime

over the annihilator of M and this is. So, we have this, but minimal primes are associated.
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Hence there exists p∈Spec R such that dim
R
p
=dimM  and 

R
p

 injects into M as an R module.

So, we proved earlier that delta of a sub module is less than or equal to of a module and

dimension of this is equal to dimension of that. So, if you prove the inequality for 
R
p

, then we

are done. Therefore, without loss of generality we may assume that M=
R
p

 we will see why. 

This is helpful just to recap we did we want to replace by some nice module. So, we look at a

minimal prime that determines dimension so that on the lower side there is no a change. This

is we have this equality and on the right side there is a desirable inequality. So, if we prove

for this it will also hold for M. 
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So, so much of the argument does not use that dimension of M is nonzero. So, this is ok. So,

assume dimension of M is positive if it is 0, there is nothing to prove.
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Since dimension of M which is dimension of 
R
p

 is positive there exists some x∈m¿ such that

there exists x is a nonzero divisor on 
R
p

. Because if anything kills if x kills some y  inside this



ring then xy∈ p, but then x∉ p. So, y must be inside p. So, therefore,  y=0 it is a nonzero

divisor on this. So, now we have 0→
R
p
→
R
p
→

R
p+(x )

→0.
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So, we saw that δ (
R

P+ (x ) )<δ (M ). So we would like to argue that sorry, we have to be little

bit careful about choosing this x. 
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So, this is true for every p. So, let me just make an make an emphasis of this that actually this

is true for not there exist, but for all x∈m¿. So, just an observation. So, I mean we have to

use the induction hypothesis; this is how we will use it.  Now, we will have to choose x

carefully to get the desirable inequality in dimension. 

So, let P⊆P1⊆…⊆P l⊆m be any chain of primes. If we show that l is less than δ (M ), then

the supremum of all such l will also be less than or equal to δ (M ).
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So, it is enough to show that l≤ δ( RP ) because the dim
R
P

 is a supremum of all such l if for

any chain the length is less than or equal to δ ( RP ), then it would imply that for the dimension

also, its supremum also. So, now, choose x∈P1¿. So, this is the choice of that we needed. 



(Refer Slide Time: 32:20)

So, now look at 
R

P+(x)
. P1⊆…⊆Pl is a chain containing P+(x ).
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Therefore, by induction, l−1 which is the length of this is remember this is length is equal to

l−1. It starts from P1 to Pl. So, there is only l−1. So, l−1≤ dim
R

P+(x )
≤δ (

R
P+ (x ) )<δ (

R
P ).

So, this is the why we can use induction. 



So, we are working for a module with a smaller δ . So, for that dimension is less than or equal

to  δ  and this  l−1 is less than or equal to dimension. So, now, therefore,  l≤ δ, but then we

have to worry about supremum of such l, once you add 1 on both sides throughout one would

lose which is ok. 
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So, this implies that l≤ δ( RP ). So, this is true for every l therefore, supremum also is true this

is true for every chain of primes. So, therefore,  dim
R
P
≤ δ( RP ) and we are already observed

that if we prove for primes like this then we have also proved for all modules. 

So, this proves one of the inequalities. So, let us just briefly go back and see what was. So,

what was the strategy? The strategy was to prove that dimension is less than δ ; and δ   is less

than S which has already been established and now we need to establish this which we will

do in the next lecture. 


