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Lecture – 41
Degree of Hilbert-Samuel Polynomials

Welcome, this is lecture 41. In this we look at this Hilbert Samuel Polynomial and we look at

its degree and prove some elementary results about it, which we will need in the proof of the

main theorem.
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So, recall (R ,m) noetherian local M finitely generated, I an m-primary ideal. Let me remind

you m-primary is equivalent to saying that √ I=m because it is a maximal ideal. Then there

exists a polynomial with rational coefficients such that, the polynomial gives the value of the

length of this module for all n greater than sufficiently large and because of this property this

module has finite length. 

And the way we proved this was to look at the associated graded module for M over the

associated graded ring of R. In fact, the polynomial ring which surjects onto the associated

graded ring and there we proved that the individual graded pieces the lengths vary by a linear

combination of those binomial looking polynomials. And this is a sum of those things and

therefore, this will also have that property, but we do not need that information for now. 
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So,  here  is  a  proposition  that  we  would  need  for  later,  (R,m),  I  as  above.  Let

0→M '→M→M ' '→0 be an exact sequence of finitely generated R modules.
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Then  we  have  3  polynomials,  the  Hilbert  Samuel  polynomial  for  each  one  of  them.

P
I ,M

'+P
I ,M

' '=PI , M+R. This is the length of I this module I mean the second polynomial gives

the length of this module mod times the power of modulo appropriate power of the ideal one

would. 



So, that would be a potential candidate for the corresponding object for this, but they so this

is but it is not exactly this. There is some extra term which is also going to be a polynomial,

because  these  two  are  polynomials  where  deg R<deg PI ,M and  R  has  a  positive  leading

coefficient. So, this is the proposition; so how it behaves in a short exact sequence. 

So, now, proof is an application of the Artin-Rees lemma. So, this is not exactly equal there

will be some remainder term, but the remainder term. So, what does this mean? Remainder

term grows I mean is  a polynomial  of course,  because the difference of a polynomial,  it

grows as n grows. That is what the positive leading coefficient means. And it grows much

slower than the that than 
M
I n+1M

 because the degree is smaller, but ok. 
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So, let us prove this. So, proof is just an I mean an application of Artin-Rees lemma after we

sets  something  up.  So,  we  are  given  0→M '→M→M ' '→0.  So,  this  gives

0→ M '

M '∩ I nM
→ M

I nM
→ M ' '

I nM ' '
→0.

So, let us just discuss this just briefly. So, we wanted to go modulo I n times these modules

respectively. 



So, if you additionally kill that I nM  here, it will also kill  I nM ' ' because the image of I nM

inside here is I nM ' ' and we get a surjective map. So, that explains the surjective map. 

So, now, let us look at what happens what is the kernel of this. So, what if you think about M,

if  you think about M mapping to this,  so let  us think about M mapping to this and that

mapping to this. So, in this composite what goes to 0. Well, first M ' goes to 0 and then I nM

goes to 0. So, the kernel of this map M to this is exactly M '
+I nM .
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So, therefore, the kernel for this map would be. So, if you if you look at this map; what I just

said  is  if  you look at  this  map,  kernel  is  M '
+I nM  therefore.  Therefore,  kernel  of  

M

I nM

surjecting on to 
M ' '

I nM ' ' .
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This is just 
I nM+M '

I nM
, which is same thing as 

M '

M '∩ I nM
. So, that is what we wrote here. So,

that gives us this term so it is this short exact sequence that we wanted to consider. 

So we are given a filtration of M by powers of I and here also by powers of I. Here we get a

different filtration. So, this is the context in which we will need to apply Artin-Rees lemma.

Write M n
'
≔M '∩ I nM . So, what does this now tell us? It tells us that length of this, minus the

length of this equals this length.
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So, therefore, we get  PI ,M (n )−PI , M ' ' (n )=λR( M
'

M n
' ' ) for all sufficiently large n. So, remember

these gives the length only for sufficiently large n. So, the however, this is the difference of

the lengths not say difference of the polynomials. 

So,  the conclusion is that,  this  function.  So, this  function n mapping to this  length.  This

function is given by a polynomial therefore, is given by a polynomial for large n. So, exactly

I mean sort of like a Hilbert function itself; so, now, by Artin-Rees lemma. 

(Refer Slide Time: 11:01)

So, by the Artin-Rees lemma, what does Artin? So, Artin-Rees lemma says that if you look at

the filtration this is I. So, Artin-Rees the filtration given by {M n
'
} of M is I stable that is there

exists some n0 such that, for all n≥n0, I M n
'
=M n+1

' .

So, this in other words that module the module M ¿ that we constructed for this M ', over the

ring R¿ it is finitely generated. So, this is equivalent to that statement. 
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If we take I to some large power which is bigger than n0, I
n+n0M '⊆Mn0+n

. That is a property

of I stable filtration that first of all. There is this containment for every n and for sufficiently

large n, I times nth piece is equal to (n+1)th piece. So, that is Artin-Rees lemma. So, this is

inside here, but repeatedly applying this. 

So therefore, for alln≥1, if you take this and repeatedly applying. So, there is a slight change

in notation here, please sorry please bear that in mind here it is all n≥n0 but here I am taking

that as a difference from n0. So, this is same thing as I nM n0
 that just repeatedly applying this

result and this is inside I nM '.

So we get this relation. Now let us take lengths, λR( M '

I n0+nM ' )≥ λR(
M
M n0+n

)≥ λR(
M '

I nM ' ). So, we

are killing a smaller sub module. So, we know that these lengths for sufficiently large n are

given by polynomials.
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Therefore, for all n sufficiently large, PI ,M ' (n0+n )≥ λ (
M '

M n0+n
' )≥PI ,M '(n). Since we are arguing

for all sufficiently large n between these two terms there is an offset of 1, but that is ok. 

This  is  for all  sufficiently  large n.  So,  now we already proved that  this  is  a  polynomial

function  n→λR( M
'

M n
' ).  This says that their  polynomial  function with the same degree and

same reading coefficient. So, this is a polynomial function we prove that this is a polynomial.

That is because for large n that, but that is enough the asymptotic behavior will be determined

by its reading coefficient and degree. So, they all have to be the same in these things. So,

which now proves that yeah so now what can what do we know so this. 
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So P I ,M '−λR( M
'

M n
' )=Q.  So, define this. So, this is the R that we had, the difference of these

two  polynomials  is  the  Q  that  we  would  define.  This  defined  to  be  the  function  the

polynomial R. So, remember, maybe I should just use some Q here.
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Let us not ever used afterwards. So, this is the polynomial Q that we asserted exists. So, this

is a polynomial it has degree less than or equal to the degree of PI ,M  and moreover its leading

coefficient has to be positive because as n goes to infinity this difference is positive. 



Since  Q (n) is non-negative for all sufficiently large n, that is from this relation so it is the

difference of these two that we called Q. It is leading coefficient must be positive. So, this is

the end of this proof. So, we won’t need the full detail of this proof to for us to use. But we

do need the fact, we do need to use it in the following way corollary.
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With notation as in the proposition δ (M )≥ δ(M '
); and this is greater than or equal to  δ (M ' '

)

it is sort of easier to see because of the surjectivity. I mean this length is always less than or

equal to this length. 

So, this degree of this polynomial for M ' 'will always be less than or equal to the degree of

PI ,M . It is the other one that required some this argument, is yeah of this is; why is that the

case? So note that proof,  PI ,M−(P
I , M '+P I ,M ' ') has degree less than degree of  PI ,M  and has

positive leading coefficient. 

In other words, if this sum here let us write like this if this sum here had a degree which is

bigger than degree of this, then that thing the degree of the difference would be the degree of

this. 
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So, let us just write this if  deg (PI ,M '+PI , M ' ' )=max {deg PI ,M ' , deg PI ,M }. Let us just quickly

observe this part degree of the sum is equal to the maximum of their individual degrees that is

because they both have positive leading coefficients. The leading terms can never cancel each

other when you take the sum. 

So, using this  yeah so this  side and the difference  has smaller  degree.  So,  therefore,  the

leading term of this and leading term of that if the if this thing had strictly had positive degree

strictly bigger than the degree of the of P I M then the difference will have degree equal to

the degree of this ok. So, therefore, if deg (PI ,M '+PI , M ' ' )>deg PI , M.
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The polynomial Q, in the proposition will have degree greater than degree of PI ,M , which is a

contradiction.  So,  in  other  words  deg PI , M '≤deg PI , M,  because  the  other  one  is  anyway

smaller the max of this is less than or equal to this. 
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Another corollary is if x is a nonzero divisor same notation as in the theorem, nonzero divisor

on M then δ ( MxM )<δ (M ).



And  why  is  this?  This  is,  because  so  consider  proof  we  have  an  exact  sequence

0→M→M→ M
xM

→0 and this is injective here because x is a nonzero divisor. So, then we

apply the proposition to this it says; the sum of these two is this plus some difference which is

positive leading coefficient and smaller degree.
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So, proposition gives. So, the outer two which is PI ,M+P
I ,
M
xM

=PI , M+Q. Therefore, PI , M
xM

=Q

and by proposition δ ( MxM )=degQ<deg PI , M which is what we wanted to prove. 

So, if you have a nonzero divisor and you go modulo that then delta strictly decreases. So, we

need one more observation about the relation one relation among the number of the length of

a system of parameters and delta. So, which sorry slightly I mean so we need to see the proof.

So, we will do that first thing in the next lecture. And then we will prove we will look at a

little  bit  more  about  systems  of  parameters  in  Macaulay  2  and  then  we  will  prove  the

theorem.


