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Welcome to the 4th lecture on Computational Commutative Algebra.
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First we lo at products of ideals. So, we are continuing our discussion of operations on ideals.

Let  I1 , I 2 ,…, In be  ideals  of  R.  The  product  ideal  is  the  R  ideal  generated  by  the  set

{a1a2…an∨ai∈ I i ,Ɐ i }. 

So, from each one of these ideals in each one of ideals in this family take one element a1 from

I1, a2 from I2 and so on; take the product and do this for all possible choices. This gives us

only a set, not an ideal and lo at the ideal generated by that thing. And, this is denoted the

product ideal is denoted by the products.
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So, just one remark; suppose Gi⊆ I i is generating set, this is for all  i. For each ideal take a

generating set then we do not need to take; so, in this thing here it is here we said take one

element at a time from each in the family of ideal and then take the product. So, we do not

need to take from all of them, we just need to take a product of elements.

Product of elements from here, where ai is in the generating set Gi for each i, also generates

the product. That is because orbit, if you have an element from an arbitrary element from I i

then one can express it in terms of the elements from the generating set for I i  and then one

can rewrite it in terms of these . 

So, this is the remark and a definition here ; for m≥2, define the m-th power of the product of

I with itself m times and this is the m-th power of I.
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So, let us look at a couple of examples. So, R is a ring in 2 variables; I is an ideal generated

by X 3 ,Y  and J is an ideal generated by X2 ,Y2. Then we take the product I times J, then at that

point you will realize at we have not obtained the minimal generators. And, then we are also

asked to intersect these issue and let us see why that is relevant.
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So, I just show you the output that is relevant; IJ  is the ideal generated by X5 , X3Y 2 , X2Y ,Y 3;

so, that is just. So, what it has done is taken this generating set and then multiplying them

element by element. So, X3 times X 2, X3 times Y 2 , then Y  times X 2 and then Y  times Y 2. So,



we get this product and it is just an ideal of R. Then when we now lo at this thing, we see that

X2Y  already divides X3Y 2. So, anything that is a multiple of this is already a multiple of this

one.

So, this is not relevant, it is not it is a redundant generator. So, we ask Macaulay to compute

it using the mingens command; it outputs as a matrix, again we will not worry we do not need

to worry about these issues now. 

So,  Y 3 is  necessary,  X2Y  is  necessary,  X5 is  necessary,  but  just  we  observed  X3Y 2is

unnecessary. So, it remove that thing; then we ask take the intersection of these two ideals I

and J . So, notice that suggests a remark.
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So,  if  you  have  a  family  of  ideals  not  necessarily  finite  family.  Then  if  you  take  the

intersection is an ideal. Now, suppose we have I1 , I 2 ,…, In, say this are ideals and then if you

intersect if you take the product ; this is inside I j for every  j. Therefore, the product of an

ideal  is  always  inside  the  intersection  of  the  ideals  and  what  we were  checking  in  this

example is what is the relation between these two things.

So, the product ideal is generated by  Y 3 , X2Y ,X5. While the intersection and again at this

point we just know that Macaulay to an computational intersection not exactly how which is

done. The intersection of this ideal is ¿ ¿,X3¿ and this is bigger than that because Y 2 is in in



the intersection, but not in the product. And, similarly X3 is in the intersection, but not in the

product.

So, in general the intersection could be bigger than the product, but they are both relevant. So

now, we do we have done with basic definitions about rings and ideals. And, now we lo at an

important class of rings called Noetherian rings.
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So, this is going to be somewhat longer section on Noetherian rings. It is a definition. A ring

commutative ring, we said that hereafter when we say ring we mean commutative ring; R is

said to be Noetherian if every ideal is finitely generated. So, it is not our first examples, that

we know are Noetherian rings which is why this is a we have not yet come across a non-

Noetherian ring. 

Of course, we have seen rings which we have not yet proved this Noetherian, but so far we

have not seen any non-Noetherian ring. For example, the fields are Noetherian. Why? A field

has only two ideals: 0 and the full ring. The 0 ideal is generated by singleton 0 and the full

ring is generated by the singleton 1 or any invertible element. So, hence fields are Noetherian.



(Refer Slide Time: 09:31)

PIDs; so, for example, Z, k [ X ] where k is a field are Noetherian, that is when every ideal is

principle. So, it is finitely generated ; sorry when you say finitely generated, it means that it

has a finite generating set; we already know and we already saw the notion of a generating

set. And, now we are saying that an ideal has generating set which is a finite set. So, this is

also that we have seen.

So, here is one more observation then which we will keep using ; if R is Noetherian then so is

R
I

 for every R ideal I. So, the property of being Noetherian is transferred to the quotient

rings. So, we are interested not just in Noetherian rings or rings in general, but also about

their morphisms, homomorphisms; sorry before that before I discuss maps, let me just do

sorry do a proposition.
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Let R be a ring, then the following are equivalent: (1) R is Noetherian. In other words, every

ideal  is finitely generated.  (2) Every ascending chain of ideals.  So,  what do mean by an

ascending chain? I1⊆ I2⊆ I3⊆…. So, it is a its a chain ascending by inclusion stabilizes, that

is there exists an m such that for all n≥m, the n-th ideal is same as the m-th ideal. So, after

while its same ideal that repeats infinite time.
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And, let us look at the 3rd condition; (3) Every non-empty family of ideals has a maximal

element. So, just a maximal element in that family not necessarily  of  maximal ideal, but a



family has a maximal element. So, this is the proof. It is not very difficult. So, I leave that I

will sketch the steps in the proof of in the exercises.

And, just condition 2 which say that every ascending chain of ideal stabilizes is often referred

to as Ascending Chain Condition, another sometimes ACC on ideals. So, we say I mean a

non-Noetherian ring is characterized by this ascending chain condition on ideals; proof we

done on this exercise.

So, now we want to talk about algebra homomorphisms definition; by an R algebra we mean

a ring S together  with a ring map from R to S.  So, what  makes S and R algebra is  the

specification of a ring map.

(Refer Slide Time: 15:16)

So, for example, R is a ring and consider the polynomial ring R [ X 1 , X 2 ,…, X n ]. So, here any

r∈R goes to the constant polynomial .  So, the polynomial ring is an R-algebra. Another

example, suppose we have two fields F⊆K  that is K  is an extension field of F, then K is an

F algebra.

And, here is this map here is a usual inclusion map and a remark is that, if S is an R algebra

and T is an S algebra; this implies that T is an R algebra in a natural way. And what is that?

So, we have to it is a ring; what we need to specify is a ring map from R to T and for that take

the ring map R to the composite map , take the composite . So, that makes T an R algebra.
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So, now we come to an important definition, in the values for the study of Noetherian rings.

Let S be an R-algebra. Say that S is finitely generated R-algebra or an R-algebra of finite type

if  there  exists  finitely  many  elements  inside  S  such  that  for  every  s∈ S there  exist  a

polynomial in n variables, such that s=ϕ ( f ) (s1 , s2 ,…, sn).

So, I apologize I forgot a piece of notation.  And what is it? So, when we say S is an R

algebra, it comes with the information about an ring map from R to S; often we will not label

it or we will not need it, but here we do. So, let me just add that somewhere and let us say

that I mean (Refer Time: 18:58) you should just write, such that s=ϕ ( f ) (s1 , s2 ,…, sn), where

ϕ is the ring map that makes S an R algebra; sorry I should have said this as part of the setup

itself. 

So, let me just reread this. So, S is an R-algebra So, to say it is an R algebra, it has to be a

ring and they must be a ring homomorphism from R to S and call that thing ϕ. Now, say that

S is finitely generated R-algebra or it is an R-algebra of finite type if there is a finitely many

elements inside S such that for every element s∈ S there is a polynomial f . So, what does this

mean ϕ (f )? .
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Here ϕ ( f ) (X1 , X 2 ,… ,X n); sorry I will write it in; suppose f (X 1 , X 2 ,…, X n )= ∑
α∈N

n

rα X 1
α1…X n

αn
.

So, α  is n tuple. So this is a polynomial.

So, the coefficients are from the ring; coefficients corresponds to that monomial. So, then

rα=0 for  all  but  finitely  many  α .  So,  one  can  write  like  this.  So,  then  ϕ (f ) is  a  same

polynomial, but except the coefficients are now substituted inside S. So, let us go back here. 

So, what we are saying is for any element s of S there is a polynomial which if you evaluate

on these s1 , s2 ,…, sn will give s, but to make sense of it. This must be a polynomial not with

coefficients inside R, but coefficients inside S. And this how which is made sense, that the

coefficients themselves are just substituted through ϕ.
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So, this is what we mean by a finitely generated R-algebra and here is a remark which I will

sketch in the exercises; S is finitely generated. So, we are to write finitely generated a lot in

these notes. So, fg denote is whether it is an algebra or it is it is ideal or later modules, fg is

for finitely generated; so you have to write that a lot.

So, S is a finitely generated R-algebra if and only if there exists X 1 , X 2 ,…, X n variables and a

surjective ring homomorphism from the polynomial ring in that many variables to S. So, this

is not at all very difficult to prove. So, I will describe one observation that we will need, but

the point is that whatever was used in the definition just plug it in.

So, I will give one direction. So, if you use that as a definition, it will give the direction from

the top to bottom and for the other direction; assuming this is true, that is true.
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So, for that we need the following observation ; suppose we have S finitely generated R-

algebra  and T a finitely  generated  S algebra.  This  implies  that  T is  finitely  generated  R

algebra. So, this is one observation that we need. So, the second observation that we one can

use is S finitely generated R algebra and J an ideal of S , then  
S
J

 is finitely generated R-

algebra.

So,  using  observation  2  one  can  prove  the  other  direction  which  is;  so,  this  is  finitely

generated because the generating set are the variables, S is a quotient. So, it is going to be a

quotient of a polynomial ring; this finitely generated thing modulo an ideal. And, hence the

quotient is also finitely generated. So, observation 2 can be used to prove the remark earlier

and observation 1 is more general. In fact, it is better to prove the remark earlier and then

prove observation 1.
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So, here now we come to the one of the most important  basic theorems in commutative

algebra  called  the  Hilbert  basis  theorem.  So,  what  is  the  statement  of  the  theorem?  R

Noetherian, S finitely generated R-algebra. Then S is Noetherian and we will look at and in

this exercise. So, for example, exercises we will one would be able to show a non-Noetherian

ring now, which I will do it in the exercise.

So now, I want to give a we are now going to prove it now, but I would like to give some

general discussion about this remarks which using which we will reduce it to some apparently

special cases for which it does not . So, that is what I will do now.
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So, general remarks. So, we know that R is Noetherian, this is the hypothesis. S is finitely

generated  R algebra.  We want  to  show that  S  is  Noetherian.  So,  then  write  S  as  some

polynomial ring, this we this was the remark earlier where J is an ideal of that ring of the

polynomial ring.

To show that S is Noetherian, it is enough to show that the polynomial ring is Noetherian. We

noticed  earlier  that  quotients  of Noetherian  rings are  Noetherian.  This  we can do on the

number of variables, that is because the polynomial ring in n variables is isomorphic as a ring

to  polynomial  ring  in  n−1 variables  first  and  then  the  last  variable  that  is

R [ X ¿¿1 , X 2 ,…, X n]≃R [ X ¿¿1 , X2 ,…, X n−1][X n] ¿¿.  And, by induction if we know this is

Noetherian and then by induction again one variable case we can prove, then we know that

this is true.

So, then we can restate the theorem to the following, we just have to prove it for one variable.

So, we start from an arbitrary finitely generated as ring from which we said, we generally do

for polynomial rings. And, then we do induction and say we just have to do one variable. 

So, this is the more this is equivalent to the general version of a Hilbert basis theorem we

stated earlier, because we can prove this, we can go back. So, this we will not prove partly

because we would like to become familiar  with the different proof which works only for

fields; I will clarify in a minute.



But, for computational purposes that is on one case its more than enough. Secondly, it should

be more importantly it gives us a family,  it  introduces us to certain to some of the basic

concepts of computation commutative algebra. So in fact, this proof is much simpler much

shorter, the other proofs somewhat longer. But, it introduces us to newer notions and things

that are cleared towards understanding computational commutative algebra.

So, we will only prove that in special  case. So, for a proof of this, this is proved in this

generality in Eisenberg’s book which I mentioned in the first lecture. Commutative Algebra

with a View Towards Algebraic Geometry, Chapter 1 section 1.4 in this generality , it just

proved here. So, it would be an exercise for you to read that proof and understand it. So, I

will just say what we are going to do now and in this lecture.
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So, we will  prove a special  case,  which is that  k  is a field and let  us say S is a finitely

generated  k-algebra,  then S is  Noetherian.  And, arguing as  earlier  S can be written  as  a

quotient  of  a polynomial  ring over  k .  So,  again it  is  enough to show that  R which is  a

polynomial ring in n variables for arbitrary n finite is Noetherian.

And, in improving this we are following the book by Cox-Little-O’Shea. It is spread in a few

sections and we will go over this proof carefully. Partly, our motivation is to understand the

points relevant to computation of questions. So, this is the end of this lecture. And, we will

continue with developing the ideas to prove this theorem in the next lecture.


