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So, we now continue with the proof of the theorem, we have done the following. So, this 
is where we had stopped in the last lecture, which is that we had a finitely generated 

graded module. And we had ; this shifts degree by 

1 degree, j part here goes to degree j +1 1, and then we had  and . So, 
this is the situation we are we were in.

And we wanted to prove that, by induction we wanted to prove that the Hilbert function

of M agrees with the polynomial in sufficiently large degrees. And not just that it agrees,

it is a  Z-linear combination of the polynomial, the binomial polynomials x choose k.

If we take degree j part here, it gets multiplied to degree j + 1 ; degree j part of the

cokernel and degree j part of the kernel. 
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So, let us call   and   and the observation was that C and K are

modules  over  .  ,  so,  depending  on

how you grade it, it would be either j or j + 1 but we will just call it j. So, we are taking

this, subtracting the length from here and then on this side we will have kernel. So, if you

have any. So, this is an exact sequence; sorry let us go back a little bit, this is an exact

sequence.

If you look at elements of degree j that go to 0, that will; so that is here. Then here we

will be look at elements of degree j + 1 and here we get some; depending on how what

you  cal C degree j or degree j + 1. So, we would get something here. So, the alternating

sum of their length should be 0. So, that is any that is a property about an exact sequence

of finite length modules, which we will work out in an exercise 

So, here there is a degree j part of this, degree j part of this, degree j+1 part of this and

degree j part of this; in that sequence all kernels are equal to all images of the previous

map. And hence the sum alternating sum would be 0. And so in that case; so we are

taking the length of this, minus this, minus this. 

So, alternating sum means, length of this minus this minus this plus this is equal to 0; in

other words,  length from these two parts this and this will be equal to length from these

two parts. 



And so, this is and when we rewrite it we would just get . So, this is from the fact

that, in each degree this would give an exact sequence, but bear in mind that there is a

change in degree for this map.  So, now, what do we know?  So, by induction, this is a

function which agrees with a polynomial of that form. So, this agrees with by induction,

this is equal to.

So, its   value is the same as that of  j>>0,  remember these are in n minus 1

variable, so this is what we would get for all sufficiently large j. So, this function itself

are not polynomials; it is only for all sufficiently large values that on the right side this

agrees with the polynomial.
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So, now, here is an exercise which I will outline how it should be done with hints. If

 is  a  function,  such  that   there  exists  some   such  that

 for  j>>0. So, this  is  the delta  of the function of the Hilbert

function;  this is the first difference of the Hilbert function. So, to finish the proof, we

will have to prove or one way to prove would be that; if the first difference satisfies this

property, then the function also satisfies that property. So, that is what we will.



So, that this would be an exercise; it would be done in a way similar to the lemma was

proved and I will outline the steps then f too is of that form. That is for all sufficiently

large j,  will also be some integer linear combination of . So, this  you will do

the exercises, not very difficult; once we understand what happened in the proof of the

lemma and so that is the end of the proof. 

So,   the  first  difference  of  the  Hilbert  functions  satisfy  that  by induction  and hence

Hilbert function also satisfies that property. So, the  precise nature of these coefficients

we will not worry about; sorry in this course, but they are also of interest in various

contexts. So, now, let us look at.
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So, recall that this polynomial is called the Hilbert polynomial of M  as an S-module.

And note also that ; that  it is at least 1 less than the number of variables ,

we would need this information literally. So, let us look at a Macaulay example.
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So,  this  is  a  calculation  about  the  Hilbert  polynomial.  So,  we  ask  calling.  So,  the

function, relevant functions are Hilbert function with a camel case. So, f is a upper case,

H is lower case. And so again, so R is a polynomial ring in one variable, apply 10. So,

this means integer 0 through 9, the function j goes to. So, if I want to print j and the

Hilbert function just for reading it. 

So, it says in degree 0 it is 1,in  degree 1, it is 1, in degree 2 it is 1 and so on which is

what is expected, because this is the basis for that is . So, in each degree it is going to



be 1 and we ask for its Hilbert polynomial. And it gives a list, sorry it gives  and it is

a projective Hilbert polynomial; let us not worry about it now, it has to do with I mean,

the word has to do with some projective geometry and which we will come to later, but

right now we just. So, this  is what we defined as  in the lecture. 
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So, Hilbert function gives the length of the module in a specific degree. So, make it a

habit if you see a command in macaulay2, that you do not know; make it a habit to look

at its help. Look at its help or its methods that will tell you in which ways you can use it.

So,  is a Hilbert polynomial of a polynomial ring in one variable. 

So, this is what we had; it is the constant polynomial 1. Let us look at the ideal ;

then we ask the same question; apply I, j goes to j , Hilbert function (j, I).

And just notice that for every , it is actually printing 0’s. The first, in any ordered

pair, the first is just j itself; second one is the value of the Hilbert function it print 0’s. So,

actually it is not the Hilbert function of I, it is a Hilbert function of the quotient then this

printing.
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So, please remember this, we ask for its Hilbert polynomial and it prints 0 and it says the

projective Hilbert polynomial; it is a constant polynomial 0, again it is of the quotient, a

polynomial in two variables. And ask for its Hilbert polynomial and it says . So, this

same notation as what we were using in the lecture.  is the Hilbert polynomial of the

polynomial ring in n plus 1 variables, so it is.
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Now, we ask Hilbert polynomial of the ideal generated by  and so, we get. So,

remember the ring is ring is this in two variables. So, if you kill this ideal in degrees

greater than or equal to 2, power of X  would not be there and in degrees greater than

or equal to 2, mixed terms involving XY will would not be there; then for only thing that

would be left is just powers of Y.

So, is spanned by . So, this it is again the constant polynomial 1 and therefore, we get

 that is what it said; Hilbert  polynomial of, remember this is in the quotient.  So,

Hilbert polynomial of this is . 
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Now, we change the ring just  a little  bit  k[x, y,  z]  and   same polynomial

Hilbert  polynomial  in a polynomial  of I.  So,  then we get  ;  remember in the

quotient now, there are also terms that would involve z. So, there will be powers of y and

every multiple of z will be there in the quotient. So, we get a different number of Hilbert

polynomial . 

And so, this particular thing I have asked just for that one could refer to it later, I have

called it . and in this here we ask for integers  0,…, 9 print the I mean give list the

values. This is just to keep track of the degree in each of these in the output. First give



the Hilbert function of the quotient in degree j, and then give the value of the Hilbert

polynomial in degree j.

So, out here we suddenly see that the Hilbert function does not agree with the Hilbert

polynomial value; this is the correct one, because it is in degree 0, all that is left is the

field. So, it has to be one dimensional and this 2 is some; it is a value of the polynomial,

it need not be the Hilbert function.

But in this particular case, here after it agrees with the Hilbert polynomial in degree 1 it

is a rank 3 vector space, it is spanned by x, y and z and the polynomial also takes value 3.

In degree 2, there are 6 degree two vector space in 3 variable,so it 6  dimensional in

which we have killed 2.

So, in the quotient there is 4 and that is what we will show is here and then one can this.

So, it grows up linearly and that is why there is a ; it goes linearly, because we have

not done anything to z. So, every multiple of z is there forever. So, that is, so the rank

grows linearly and we see that in a . So, now we use these ideas to study local rings,

a noetherian local rings; we use these ideas to study noetherian local rings. 
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And so, the thing is called Hilbert Samuel polynomial. So, Hilbert polynomial, the study

of this  Hilbert  function etcetera  goes  back to  Hilbert.  So,  the beginning of  the  20th

century or around that time, turn of the century from 19th to 20th; but the (Refer Time:



15:45); local ring is there, structure etcetera were all from the middle of the last century

Samuel and various other people. 

And so, this is called Hilbert Samuel polynomial. So, here is a theorem. So, let me state

the theorem and then we will try to set up and then prove it. Let (R, m) be a noetherian

local ring; M finitely generated R-module, I an m-primary ideal. Remember saying that

the radical of I is a maximal ideal is same thing as saying it is primary to that maximal

ideal.  So,  we  often  write  it  and  might  just  say  m primary  ideal;  then  there  exist  a

polynomial. 
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 such that for all n>>0, . 

So, this is sort of a similar flavor as the Hilbert polynomial theorem, except there are no

graded ring structure at this point; it is just a local ring and modules over it and then

quotients. And the model that we will consider is this quotient, .
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So,  this  is  the  thing.  So,  let  us  define  this   is  called  the  Hilbert  Samuel

polynomial, polynomial of M. So, when we prove, we will get some idea of what the,

what is I mean; how many way degree etcetera .  So, in order to prove this statement; we

need to introduce a new object.
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So, let R be a noetherian ring, M finitely generated and I an R ideal. Then the associated

graded ring,   is a graded ring. 
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. So, here  by definition by that we mean R,  So, we will define multiplication

for homogeneous elements.   
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Where ;  is  residue of mod  ,   is residue of b mod , and

ab in  , but  is  residue of ab in mod . So, this is the definition of the



associated graded, addition is just these are all abelian groups are. So, this is what we

can. So, what do we need to do we use multiplication.
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And the observation that we would like to make at this point is ; if  generate

I as an ideal, then  there exists surjective ring homomorphism 

 ; put variables enough of m of them to the associated graded

ring, . So, this is the, this is the property; this need not be an isomorphism,  there

could be a things in the kernel, but there is definitely a surjective homomorphism.

Because in any degree, all that we need to generate is  some product of these generators

and there  R linear  combinations.  But  for  the  R-linear  combination,  we may as  well

assume that there are elements not inside I, so you can take work with the residues. And

for getting the powers products of the generators, one can just use this map. So, the, there

is a surjective homomorphism is what we use.
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So,  now  let  M  be  a  finitely  generated  R-module  ;  then  we  can  construct  the

corresponding associated graded module , given by 

 and M itself is not a graded module; R is some noetherian ring and M is some modulo

over it, from which we can get this graded. when we say  is by definition M.

So, this is I get this thing. So, now, putting these, so, the observation is that; so we are

assuming that M is finitely generated.
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So, then the associated graded module is finitely generated module over the associated

graded ring.  So, now, let us prove the theorem. So, recall the  theorem was here, we

need to look at . So, the length of this. So, proof of the theorem
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So,   .  That  is  because,  this  is,  this  can  be  prove  by

induction on n. So, let us look at the last step in the induction. So, the last step in the



induction  would  be    let  us  write  it  as  a  short  exact  sequence,

So, therefore, there is this surjective map and the kernel

of this map is  . So, recall that, in the theorem I is m-primary. So,   is

finite length. So, we can talk about length and then by induction, this is equal to the

corresponding sum all the way up to n- 1; and then for n we add this, we get the length of

this thing.

All of these are finite length modules, length is additive in an exact, short exact; I mean

the middle  length of the middle one is  the sum of the lengths  of the outer  two and

therefore, the length of this is these two and then by induction one can show this. So,

now there is a polynomial. 

So, notice that this is the graded part of the. So, this   this is the graded, I th

graded part of the associated graded module, which is a finitely generated module over a

the polynomial ring over  which is Artinian. Note that  is Artinian.
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And the  is finitely generated module over ,  where m is such that

I has a generating set of m elements. 
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So, this is a finitely generated module over that . So, therefore, by the previous theorem,

which is about the existence of Hilbert polynomial for modules over such rings; each

degree  piece  eventually  is  given by a  polynomial.  And using the  same argument  as

earlier, this length is also given eventually by a polynomial; there will be an initial part

where the polynomial would not agree, but afterwards it will agree with the polynomial.
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So, now therefore, now use the previous result. So, maybe I should just write; therefore

the function  is given by a polynomial for all sufficiently large j which

now implies that, the function 
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 is given by a polynomial, for all sufficiently large j. So, this is the end of this proof. So,

in the next lecture, we will prove that the degree of the polynomial does not depend on

the ideal. And that is therefore, an invariant of the module itself. And then we will relate

these two dimension. So, that is the, that would be the in the next few lectures. 


