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Welcome, this is lecture 37. So, in this we continue our discussion about Artinian rings and

then we would like to discuss about Graded modules over Artinian local rings. This is graded

modules over polynomial rings over Artinian local rings. So, this is the plan for this lecture.

And so, Artinian rings we are just continuing our discussion from the previous just to give a

specific example or one place where they show up. 
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So, proposition: let k be an algebraically closed field. So, this assumption is only to say we

can visualize the solution set field. R :=[x1 , . . . , xn], I an ideal of R, then R/I is Artinian if and

only if Z(I) which is the solution set of I, is finite. So, we can remove this hypothesis the case

algebraically closed. 

Again that is used only to say that if Z(I) is finite then there are only finitely many maximal

ideals in that ring. It may not be true if k is not algebraically closed. It is possible that Z(I) is

infinite Z(I) is empty, but the ring is not is non-trivial . So, it is to avoid those situations that

we are assuming case algebraically closed.
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So, let us so, just a remark before we prove we already know this we have already seen an

equivalence of this condition recall that Z(I) is finite if and only if this we proved little while

ago that rk k( RI ) as a k- vector space. This is this k as  k -vector space. So, as I mentioned in

an earlier  lecture we have to use dimension in two different ways; one is a vector space

dimension and the other one is (Refer Time: 03:39) dimension. So, we will try to use the

word rank whenever we talk about vector spaces. 

So, this is finite and then we also saw that this is equivalent to the condition that Grobner

base every Grobner basis. Meaning that is for every monomial order contains a term with x i
a i

for all i contains an element; contains an element with this as the leading term. So, sorry,

every Grobner basis in any monomial order; in any monomial order contains an element with

the leading term x i
ai for every i, this is true. So, for all i and for all Grobner basis there is a

term with this leading.

And, this I mean equivalence of all this we had proved earlier. So, again it does not one does

not need Z(I) to be fine case may be algebraically closed one can reformulate it in terms of

Spec(R/I) and, but first to visualize it, it is better to state in this geometric fashion. So, let us

prove the proposition. 
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If so, if Z(I) is finite. So, notice that R is Noetherian. So, thereforeMin( RI )⊆ Ass( RI )  is

finite. Till now, we had not seen a proof or we did not know that minimal primes over an

ideal in a Noetherian ring is finite. So, this is a proof that we know that associated primes are

finite  because  associated  primes  are  precisely  the  primes  that  appear  in  an  irreducible

decomposition. 

Starting  with  an  irreducible  decomposition  we  can  make  it  irredundant  primary

decomposition  and  associated  primes  appear  as  associated  to  one  of  those  things  and

therefore, this list is finite and hence this is finite. So, this is. So, minimal primes are finite.

So, let p be a minimal prime over I. Then, Z(p) ⊆Z(I). So, this is also finite.
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So, we want to show that if Z(p) is finite for some prime ideal p, then p is maximal. So, write

Z ( p )=Z (m1 )∪ . . .∪ Z (mr ) where m1 , . . . ,mr
are maximal ideals and Z (1) is the point where the

point corresponding to that maximal ideal. So, we can write it like this. But remember that

this is equal to also equal to Z (m1 . . .mr ) if the product or the intersection whichever one.

In other words, these two ideals have the same radical or since p is prime this is a radical

ideal. So, now, this implies that this implies that Z (m1 . . .mr )⊆ I   mean it says that these two

have the same radical, but since p is prime it is shown radical. So, this is inside p. 
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Which now implies that mi⊆ pfor some i, but this is maximal. So, p = mi. So, prime ideals in

which if p is a prime ideal such that Z (p) is finite then p is maximal. So, it is in this thing that

we use that k is algebraically closed. I mean it is possible that p is a non-maximal over a non-

algebraically closed field it is possible that p is a non -maximal ideal, but it has no solutions

in that over that field.

So, conversely this is the only if. So, this proves that p is maximal, but then remember where

we chose p from. p was from minimal primes. So, every minimal prime is a maximal ideal

you let us just write that and conclude. This now implies that Min( RI )⊆maxSpec (R ) which is

what we wanted to prove.  So, sorry, let us add the details. 
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So but, this is finite. So, then this implies that Min( RI ) is some set let us say {m1 , . . . ,ms}  not

necessarily the one that we saw some other {m1 , . . . ,ms}  maybe just to be safe let us call it

{n1 , . . . , ns}  maximal ideals.
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So, now this implies that √ I=. ∩
i=1

s

ni, but from which we can conclude that R/I is finite length

because some power of this will be inside I and these all have finite. So, R/I has finite length



in other words it is Artinian. So, this is the direction of if and only if. Now, it is Artinian.  R/I

Artinian. 
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Which now implies that every prime ideal in R/I is a maximal ideal of R/I. This now implies

that V ( I )⊆Max Spec (R ). This is primes containing I and maximal ideal of R/I. So, they pull

back to maximal ideals in R. So, we get this condition, but we need to show that it is actually

finitely many points. 
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Since R is Noetherian, Min (R/I) is finite, but what is in V(I)?   V(I) is prime which contains

some prime in Min I, but then they are all maximal which now mean says that the minimal

primes of R/I  is a finite subset of Max Spec R. Remember, minimal primes are the minimal

elements in these are the minimal elements in V (I), but they are all inside here and among

them there is no comparison. So, it they are all in pairwise incomparable. 

So, this is inside here and so,  Z ( I )=Z (m1)∪...∪Z (mt )for some maximal idealsm1 , . . . ,m t. n

was the number of variables this list as well collection cardinality this could be more or has

no relation to the number of variables. So, this is. So, this is the proof of this. 

So, now, let us try to take a look at Macaulay an example. So, I will also try to. So, it is a

relatively simple example, but we will try to sort of use things that we have learnt so far to

understand that ideal I mean various things that we have learnt so far. We will try to use on

that ideal.
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So, here is an example. So, we take a polynomial so, again just let me just remind you this is

the first line ignore the first line; that is not part of the code. Just these three lines that are

offset;  Z  just  ignore  that  line.  So,  polynomial  ring  in  three  variables  and  I  is  an  ideal

generated by three things. So, let us just quickly look at what it is in the if we were looking at

in R 3. 



So, this is a cone at least in the positive part; when Z is positive this is a cone. This is a plane

which will intersect the cone because well 111 it is a solution and so, is for this one. So, just

by  looking  at  itself,  we  know  one  point  in  the  intersection  even.  So,  and  since  these

coefficients here are substantially less than 101 whatever calculation that happened in R will

also happen identically in this field. So, 111 is going to be a solution, because the coefficients

are integer. 

So, in principle one can ask those relations over any field; not necessarily in over R or over

the  field  that  was  defined.  So,  here  we ask  for  generators  of  it  is  Grobner  basis  and  it

produces something and so, if you look there is a term here with x, there is a term here with

y2and then there is a term there is a polynomial here with leading termz3. 

So, from the test that we have learned earlier this will have finitely many solutions even over

the algebraic closure; this is of course, a finite field. So, you will have only finitely many

solutions. But, even over its algebraic closure, it will only have finitely many solutions.
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So, now let us look at the minimal primes. So, if you ask for the minimal primes what will

happen is it will produce some long list which will be unwrapped you know unwrapped line

going out of this page. So, I just try to print one print them one by one ok. So, I ask Macaulay

for minimal there is a command called minimal primes. So, take a look at its help, take a look

at its methods. 



So, if you ask methods minimal primes it will tell you the ways in which methods minimal

primes can be used, the types of the arguments. So, call it Min I then I ask. So, this is a this

we have seen this is an abbreviation for the apply function. So, this is same thing as apply to

Min I this function p maps to print p. So, it just prints and does nothing else.

So, these are the things and as I mentioned earlier. We know that; we know that 111 is a

solution to this I mean. So, it has some solution even over any field. So, we ask (xy - 1, x -1,

z- 1) is an ideal which contains this and then it produces something and of course, depending

on what field you put these coefficients might be different.

So, if you put instead of 111 you put some other larger field this might be these numbers

might be different. So, that of course, depends on the. So, I mean these numbers will depend

on what field we are working over. It may not actually have any solution over R. I did not

check, but it may not have a solution over R it. Over R maybe one would just see this and

some other thing.

So, how even if the equations involve only integers what the primary decomposition will look

like will  depend on the field.  So, please keep that  in mind. So, as I  said we could have

guessed the first one by looking at the generators of I. These three other minimal primes .

Label the above minimal primes p1 , p2 , p3in that order p1is that one p2is a one with this and

p3in this order.

So, we ask we would like to understand what is the primary decomposition of I? Meaning I =

j1∩ j2∩ j3; j1associated  top1,  j2associated  to  p2 , j3associated  to  p3 .We  would  like  to

understand this, but. So, we will see if we are lucky enough and we ask just intersect these

three prime ideals and check is it equal to I? So, then it says no.



(Refer Slide Time: 20:34)

So, that is too bad and then let us look at the next. So, we saturate. So, now, we try what we

know if you want to find associated or primary components that are that do not contain a

specific  element  saturate  with  respect  to  that  element  and  then  try  to  find  a  primary

decomposition.  So,  let  us  saturate  I  by  x-1.  So,  it  is  it  will  try  to  find  components

corresponding to these two primes.

So, first I saturate that and the second time I saturate with respect to x + 32y - 9. So, we are

looking for this prime component corresponding to this prime. So, then it produces some

ideal ok. So, now, this would be this ideal would be primary to p3. So, this is this way this

will get rid of p1, this will get rid of p2and so, what is left over will be primary to p3since that

is the only other prime ideal.

And if you look at it you know this looks very prime like because there is some linear thing

here there is some linear thing here and then some z2. So, this might be prime I mean we by

looking at it we just feel this might be prime .
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So, then we ask, is this prime? Is this ideal that we got which I called I12, I12 is that equal to

the last one in that list Min I? So, what was Min I? Min I was these three Min I was these

threep1 , p2 , p3. So, we removep1, we remove p2and we got some ideal and since that thing

looks very prime like we see if we get lucky and ask is it equal to is I12 equal to last Min I

and it says it is true. So, I12 is p3 and it is the component corresponding to p3 .

So,  now we will  remove p we have already removed  p1we will  remove  p2we will  now

remove p3. So, this is the this is what we did. So, remember p3 has this x- 41y - 35. So, we

remove that now. So, we remove that now here and then we get. So, then we ask is this the

middle one? Middle one is p2. 

So, remember list is numbered from 0 to length minus 1. So, 1 means the second one in the

list and so, we ask is this saturation. So, we get some ideal here then we ask is it equal to Min

I and it says true. So, therefore, p2 is also a component .
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So, then we become sort of hopeful and then we ask let us now saturate . So, I just put this in

a you know in one line. First, we saturate that linear form in p2of that thing we saturate the

linear form inp3and then we ask we get some ideal then we ask is this equal to. So, this is the

component forp1. So, ( z−1 , x+ y −2 , y2−2 y+1 ); if you notice this itself is not over that field

this is this itself is not a prime ideal. This is not same thing asp1. 

But if you notice if you go with algebraic closure it has only one I mean z of this ideal is just

one point. The zero set of the side is just one point, z coordinate is 1 and if we solve this one

says y coordinate is 1, but with multiplicity 2 and that will solve x coordinate also to be 1. 

So, this is I mean the component of  p1 ; p1corresponds to the maximal ideal at 1,1,1. The

component correspond component is an ideal which is not exactly p1, but something which is

just prime only primary to it.
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So, this is not the same as  p1and then we just check that we got the correct answer. We

intersect the last one we just got output and then MinI and we already concluded that Min

(I_1) and Min(I_2) are already the associated components associate corresponding to the p2

and p3. So, we just intersect. So, of course, we will get some because intersection remember

involves extending to some bigger ring. So, ti + (1- t)j and then contracting it back to R.

So, we get some really long list of generators and then we just ask is this same as I and the

answer is yes. So, this is an example where we work through an Artinian ring using various

techniques that we have learned so far about saturation finding minimal components and so

on. 

So, the only thing that we actually I mean in this example only thing whose algorithm that we

have not studied is the minimal primes. So, that I mean one has to I mean I use that to get this

list and then proceed from there.



(Refer Slide Time: 26:25)

So, now we want to discuss a new topic called graded modules this is. We will not discuss

them in more generality than what we need for the present which is the following. So, R is an

Artinian local ring. S=R [X1 , . . . , X n ]. But, not just I mean we put an extra structure which is

natural to this one which is the deg ( X i )=1 i for all i.
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So, this gives a decomposition of S = ⊕i∈N Si ; So, this is as R modules not as a not as a ring,

but as R modules.
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 By  Si we mean the R module actually free generated by monomials of total degree i that

{Xa1 . . . Xan :a i∈N ∀ j ,∑ a j=i }. So, this is; so, this is a free module this is just a basis. 

So, it is exactly like a polynomial ring over a field except that the coefficients we now allow

for Artinian rings. And, polynomial ring always has a I mean depending on what degree one

wants to give to these variables and for our I think all that we need is this. 

So, we will just stick with that thing. So, only point that we allow for some freedom for here

to be Artinian local rings . So, this is the this is. So, this is called a graded ring. So, in this

particular case it is graded by Z, although it lives only in the non-negative degrees.
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So, S is a graded ring we will come back to graded rings later after we prove these somewhat

technical  things  and use them extensively  with  Macaulay  tool.  But,  I  right  now we just

develop enough for us to go through this  just  to  you have to  understand how to discuss

dimension of Noetherian rings.  So,  this  is  a graded ring and what is  the other property?

Si S j⊆S i+ j for all I, j. If you take polynomials elements of Siand multiply them with elements

of S jthis is inside Si+ jfor all I and  j. 

And, we will say that this is Z graded or we will just say non-negatively graded because in

this case this is. So, first Z-graded means that the grading is controlled by integers like this N-

graded in particular says that it is 0 the graded parts are 0 in the negative degrees. So, that is

all. 
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Now, an S-module M is said to be a graded S-module if M has a decomposition  ⊕i∈ZM i and

here we would allow for all elements in Z all index by integers as. So, remember any S

module is also an R module.
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Typeequationhere .

So, as R - modules such that  Si . M j⊆M i+ j  for all i and j. So, elements of degree i will

multiply elements of degree j to elements of degree and the result  would be elements of

degree i + j. So, this is what we mean and for any i for all. So, just one piece of notation for

all i elements of Siand M i  are called homogeneous of degree i.



I mean technically the union of  Si not the direct sum the union of  Sielement are called the

homogeneous elements and if  f belongs to Si we say it is degree is i, but I hope this is clear

homogeneous  means  it  belongs  to  one  degree  piece  not  a  sum of  two  things  from two

different degree pieces.
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So,  one  observation  that  we  want,  note  that  S  is  Noetherian.  Now,  we  would  like  to

understand what M. So,  let M be a  graded module. So, then note or maybe exercise. 

So, just by saying that it is not asserted that it has a generating set of homogeneous elements,

but the exercises to show that M has a generating set of homogeneous elements sorry, that

does not need a finitely generated you can just you need this just graded module means it has

a generating set of homogeneous elements.
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Now, assume that M is finitely generated then there is a least degree of a generating set. So,

let  G  ⊆M be  a  set  of  homogeneous  generators.  Let  so,  this  is  finite.  So,  let  d  =  min

{deg (g ) :g∈G}. So, among the generators take the among the degrees of the generators take

the least number.
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So, now, this implies that M i=0 for all i < d. So, in so that is the first observation if you have

a finitely generated module, then in sufficiently negative degrees the module is 0. So, that is

one observation. The next observation that we would like to make is. So, now, by so let us



say that so let us take such a d then for all i; for all i≥ d,  if you look at j direct sum j greater

than or equal to i.

So, maybe I will just draw a sketch of what so, there is. So, let us say this is negative degrees,

this  is  positive  degrees at  some sufficiently  negative  degree we have 0’s then something

happens. Then here is M d. It does not say d is positive or negatives, this is some d. So, here

there is stuff. 

So, now, take somei≥ d. So, take this module . ⊕
j≥ d

M j So, this is an S-submodule. So, this is a

graded submodule of M. 
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Therefore, it is finitely generated because S is Noetherian this is modulus finite M is finitely

generated. So, which now implies that if you take the 
⊕ j ≥ iM j

⊕ j>iM j

   is finitely generated S module

of course, because it is quotient of an S module, but it is finitely generated as an R module.

So, the observation that we want to make is if you take S and go modulo the ideal generated

by the X is which is the entire positive part of S this is isomorphic to R. So, if you use that

thing we conclude that so, but the what is this? This is just as an R module this is same asM j.

So, if M is finitely generated then in sufficiently negative degrees it is 0 and moreover every



homogeneous part is a finitely generated R- module. So, this is an observation that we would

need to use.

So, we will  continue discussing graded modules  in the next lecture  and we will  prove a

theorem about their lengths. 


