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So, we continue our discussion about Artinian rings. So, maybe one more example which we did not

discuss last time. Suppose that R is a let us say R is a Noetherian local ring or take any Noetherian ring

localizing let us say (R, m). Let I be any m- primary ideal i.e radical of I is m then R/I is Artinian. 

That is because if you keep a descending chain of ideals because R is Noetherian some power of the

maximal ideal is inside I and if you keep a descending chain of ideals one can so, this requires a little bit of

working, but then one sees that it must be inside eventually it will go into larger and larger process of the

maximal ideal and hence also inside I and therefore, it would be 0.

So, every descending chain stabilizes we will understand this in greater detail later, but this is just I mean

may be just to give an idea and it is because of this. So, that we will have to worry about such ideals and

we will see what is called filtration by ideals which is why we have to first understand Artinian rings a

little bit.
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So, remark from the continuing from the discussion from the previous the final proposition

that  maximal  ideal  is  same as  prime  ideals  in  Artinian  rings.  So,  first  is  the  definition,

Jacobson radical of R is the intersection of maximal ideals.

So, we will denote it by J(R). So, hence J(R) equals the nil radical for every Artinian ring R.

So, this is an observation we will need to use this later, but I mean we will need to use the

fact that maximal ideals and prime ideals are the same in any Artinian ring and we will use it

in this fashion. 
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Proposition:  Let  R be  an  Artinian  ring.  Then  it  has  only  finitely  many  maximal  ideals.

Proof: let ∧ be the collection of finite intersection of maximal ideals. So, take finitely many

maximal ideals intersect them that ideal. So, take such things and call it ∧.
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Since every maximal ideal of R is in ∧because this is just trivial intersection of one maximal

ideal  ∧ which is not empty which means that ∧ has a minimal element. DCC for ideals the

same thing as saying that every non-empty family of ideals has a minimal element, call it I.
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Write I = m1∩...∩mn ,wheremi are maximal ideals. Now, let m be any maximal ideal then I

∩m ⊆I. So, I∩m is an intersection of finitely many maximal ideals.
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So, I ∩m ∈ ∧ .By minimality of I, I ∩m=I.
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In other words, m1∩...∩mn⊆m. I  = I ∩m which is inside m. But, here again same argument

a bunch of ideals whose intersection is inside some prime ideal so, this now implies that there

exist i such that mi⊆m, but both are maximal. 



So,mi=m. So, there is a minimal element and only those prime those maximal ideals that

appear as an intersect in that intersection expression are the maximal ideals, there is nothing

else.
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So, corollary of this is that Jacobson radical of R is nilpotent. So, remember this is also the nil

radical. So, just there is some content in the statement in the statement because nil radical

consists  of  elements  that  are  themselves  nilpotent,  but  what  do  we  mean  by  nilpotent?

Nilpotent for an ideal what does this mean? So, there exists an n such that J (R )
n
=0.

Of course, l because J(R) is equal to the nil radical. For every element there is an n with this

property,  but  we  do  not  know whether  any of  these  ideals  is  finitely  generated.  So,  by

knowing that it is true for every ideal every element of the ideal, one cannot conclude that it

is true for the ideal it is ideal itself. I mean at the end it will be true because we will prove

that an Artinian ring is Noetherian. So, these are finitely generated, but that is after all of this

is proved. 

So, let us prove this. So, let us write I. So, let us write I = √0. One could just keep writing J

R, but it is really the argument that the nil radical is nilpotent is what we are going to prove

and write I for this. So, we want to show that there exists some power of I which is 0.
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Consider the descending family chain I ⊃ I2⊃ . . . . Let Q be its stable value. What is if Q is 0,

then we are. 
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because if Q = 0, then some power of I is 0 that is all that we wanted to prove. So, we want to

assume a is nonzero and get a contradiction. Otherwise, let ∧ = {K ideals of R |KQ≠0 } .Note

that Q2 ≠0because if Q2
=0 means someI 2n=0, but then this is the stable value. So, I 2n=In.



So, anyway we will be done. I mean for some large n. So, Q2≠0. So, this implies that ∧ ≠∅

right this a itself is in ∧. So, it has a minimal element. 
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So, let K 0 be a minimal element of∧. Now K 0Q ≠0  this implies that there exists  a∈K 0 s . t

aQ ≠0   Because if this is true for principal sub ideals of K 0, then it would be true I mean it

would not be true for  K 0also. So, this by minimality of  K 0gives that  K 0itself is a principal

ideal because a is principal ideal. So, this is some a.
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So, now let us look at it this. (a Q) Q = a Q2 = aQ≠0. It implies that aQ∈∧ but aQ⊆ (a ).
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But, aQ is inside ideal a minimality of ideal a sorry, sorry that is not correct not it will a is

inside I ideal generator by the element. Sorry, just notation is a little confusing at this point

which is what. 

So, let us just make sure we let us just recall what these two things are this is the generator of

minimal element of ∧ and this is the stable value of I n. So, this is this is the minimal element

in∧. So, this is also inside ∧. So, this is inside here.

So, minimality of (a) in ∧gives that a Q = (a). So, hence therefore, there exist b∈Q such that

a = ab. Remember, this is inside the I which is the nil radical. This is the power of I this a is a

power of I. So, it is in the nil radical.
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So, now,  a=ab=ab2=a b3=. .. But bn=0for all sufficiently large n which means that a is 0,

but that was a contradiction.

So, the contradiction came when we go backwards contradiction came by assuming that this

set  is  not empty.  So, therefore,  there exists  some N such that  IN=0.  So,  now we define

something called a composition series. So, this is the same thing one would see in group

theory. 
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So, definition let M be an R- module, R is not necessarily Artinian just a many ring be an R

module  R  any  ring  not  necessarily  Artinian.  Composition  series  of  M  is  a  descending

filtration M=M 0⊇M1⊇ . . . .⊇Mr=0.
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such that  
M i−1

M i

is a simple R- module over a commutative ring the only simple R -modules

are quotients by. So, a simple R -module means that there is no proper submodule in it non-

zero  proper  submodule  in  it  and over  commutative  ring  the  only  simple  R modules  are

quotients by maximal ideals. So, this is really R/m for some maximal ideal m. So, this is so, I

mean M need not admit a composition series.

So, then fact this is called Jordan – Holder theorem which we will not prove we will not

prove in this course is that if M has a composition series of length n; length here is this

number here. So, it starts from 0, length 1 means there is just one inside it and that is a 0

length 2 means in when you go down two steps it becomes 0 and so on.
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So, as we mentioned it is not necessary that every module has a composition series, but if it

has a composition series of length n then every composition series of M has length n. 

So, this we would not prove we will just accept this thing and we will denote this number;

denote this number n as λR (M )because the quotients have to be simple R modules. So, it is in

the thing and call it the length of M over R or as an R module or something like that. So, this

is what we will call this thing.
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So, here is the here is important property about existence of a composition series. M has a

composition series in other words the length. So, if it has a composition series we will denote

that length by λ (M ). If it does not admit a composition series we will just say λR (M )is infinite

if it does not have just a notational convention composition series.

We at least we are discussing Artinian modules and rings, we are looking for things that have

finite length. So, has a composition series if and only if M is Noetherian and Artinian.
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So, proof : So, let us say only if . So, we assuming that it has a composition series well, if it

has a composition series then every ascending chain has to strictly ascending chain has to

stop somewhere or strictly descending chain also has to stop somewhere. Because when you

intersect  a chain with the composition series we would just get strictly  we if you take a

strictly ascending chain and intersect with the composition series we would just get a weakly

ascending chain. 

But then it cannot be weakly ascending infinitely long if that happens then it becomes stable

and similarly  for descending. So, every strictly  ascending or strictly  descending chain of

ideals is finite that is because the composition series itself is finite. 
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Sorry, not ideal submodules is finite. And, if so, we want to now exhibit a composition series

ok. So, this again goes like the proof of existence of maximal ideals in a ring by. So, start

with M then  M 1 is a maximal submodule different from M different from M such a thing

exists because it is Noetherian this exists since M is Noetherian.

Now,  M 1 is  also  Noetherian.  So,  continue  doing  this  at  every  stage  pick  a  maximal

submodule. So, the quotients will be simple because you cannot put anything else in between.

So, quotients would be simple and this must stop because M is Artinian. And, that is and if it

stops it must stop at 0 because if it does not stop at 0, you can find a submodule in it and

hence a maximal submodule.
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So, and it therefore, must stop at 0. So, therefore, it has a that is the composition series. So,

this proves that existence of a composition series is a very special property, and we will the

characterization of Artinian rings is that it admits a composition series. 

It  has  finite  length  as  a  module  over  itself  which  therefore,  also  proves  that  they  are

Noetherian.  It  is  not  true  for  arbitrary  modules,  there  are  Artinian  modules  that  are  not

Noetherian; the Artinian rings are Noetherian rings. 

So, proposition R is Artinian if and only if length of R is as an R module is finite. In other

words, it has a composition series. So, by above if is by above in fact, by above R is also

Noetherian. So, it is this direction that is nu. 
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So, only if. So, we so, recall that the Jacobson radical is nilpotent. So, what does that say?

So, then so, we can consider the descending chain. So, look at this m1
n1m2

n2 . . .mt
n tnot in product

intersect .
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So, as a vary n so, this goes sorry the word  are m1. So, let m1 , . . . ,m tbe the distinct maximal

ideals finitely many that we already said maximal ideals. So, then we can look at this one mi
ni,



but intersect then and as we vary ni I mean maybe fix all, but one  niand then vary this nithis

can give a not all ni's, but this can give a descending chain.
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And, therefore, we see that 0 is equal to some intersection of maximal ideals. Therefore, there

exists nisuch that this is true, but these are pairwise co-maximal so, but say therefore, this is

also equal to m1
n1m2

n2 . . .mt
n t.

So, in other words therefore,  0 can be written as a product of maximal ideals product of

finitely  many  copies,  repetition  allowed.  So,  this  is  an  observation  that  we  know about

Artinian rings. 
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So, now let us take a descending chain. So, it is let us re-label and call them 0 = m1 . . .mk. So,

repetitions are allowed not mi  is maximal mi maximal for all i and repetitions allowed. That

means mi is not different from m j if i is different from j these are not just the distinct maximal

ideals. 

So,  we just  allowed relabeling  to.  So,  that  is  fine.  So,  now, let  us look at  this  filtration

R⊇m1⊇m1m2⊇m1m2 . . .mk=0 .  So, there is this. 

(Refer Slide Time: 32:36)



Now, if  you take  
m1 . . .mi−1
m1 . . .m i

.  So,  this  is  an  Artinian  R/mi module.  So,  this  quotient  is  a

submodule of R modulo this product ideal and R is an Artinian or quotients are also Artinian

submodules of Artinian and Artinian. 

So, this is an Artinian module. It is an Artinian R module, but it is killed by mi. So, it is an

Artinian module over R/mi, but this just means that it that is a finite dimensional vector space

over R/mi. This is a field over a field a modulus Artinian if and only if the rank is finite. 
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So, then therefore, we can take this filtration. So, then refine the above filtration infinitely

means in finitely many steps to get that to get a composition series of R that is.
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So, we will do one corollary of the statement which is that every Artinian ring is Noetherian

that is because the length is finite implies Noetherian and of dimension 0. That is because

every maximal ideal is every prime ideal is maximal. There are no chains of primes of length

at more than one.
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Now, the converse is also true proposition. Let R the Noetherian ring of dimension 0, then R

is Artinian. So, proof: we have seen this for Noetherian modules we know that there exists



something called prime filtration which we saw earlier ok. So, use prime filtration. So, what

is that? There exist 0 = M 0⊂M 1⊂ . . .⊂M r=Rand these are strict inclusions.
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Such that 
M i

M i−1

≅
R
pi

for some pi∈spec(R). But, dimension of R is 0 that is. So, this uses the

fact that R is Noetherian this assertion so far. Now, we use a fact that dimension is 0 which

now implies that 
M i

M i−1

is a simple R -module. These are quotients by maximal ideals which

now implies that length of R is finite and therefore, it is Artinian. 

So, this is a short discussion about Artinian rings. We will see we will come back and see

more  examples  little  later,  right  now  our  immediate  goal  is  to  understand  proof  we

understand dimension a little bit better. So, in the next lecture we will look at some graded

modules  and  then  from  there  we  will  develop  a  notion  of  a  notion  of  another  way  of

estimating dimension and we will prove that these numbers are the same.


