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So, we continue our discussion of integral extensions by proving. So, the next statement that

we want to prove is the following called the Going up theorem. There is a similar going down

theorem also, which we will not prove now. At the end of the course if we have time we may

consider it, but that depends purely whether we have time or not. And we will try to develop

things that are of use in computational situations.

So, so recall our setup is that, R⊆ S. Let P0⊊P1⊊…⊊Pl a chain of primes of length l  in Spec

R and Q0 in Spec S such that Q0∩R=P1.
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Then, there exist Q1 ,…,Q l in Spec S such that Q i∩R=Pi for all 1≤i≤ l. So, we can think of

it as follows, there is an integral extension R⊆ S, and then there are primes here contracting

to this. 

So, in other words the map of Spec, Q0 is in the fiber over P0, then the theorem asserts that,

there exist  Q1 ,…,Q l such that, this and they form a chain  Q0⊊Q1⊊…⊊Q l. So, this chain

goes up as a chain like this. So, that is why it is called a going up theorem.

So, here is a chain of primes, there is a prime which is in the over in the fiber of over this

smallest one. Then this chain can be lifted to in Spec S. So, that is what this theorem says.
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So, let us prove this. So, if we have to prove this we can just prove for l=1, because if you

can extend this, then we will get a Q1. Then between P1 and P2 apply the same theorem to get

Q2, because Q1 has already been obtained. So, now, Q2 has been obtained. 

So, now, apply that for to P2 and P3 and so on. So, one would get a chain of primes this way

inside Spec S. So, without loss of generality l=1. So, this rest can be done by induction. So,

this is the picture.

So, let me just repeat the picture that we have here, this is the integral extension. Then there

is a P1⊇P0 here and the Q0 mapping to this P0 contracting to that P0 and we would like to

construct something here. So, go modulo P0.



(Refer Slide Time: 05:06)

So, then we have 
R
P0

 inside here we get 
P
P0

 and then we have 
S
Q0

. So, we just get, so this is

what this is integral extension, that is the point and in this situation there must be something

here. So, there exists a Q ' prime ideal of 
S
Q0

.
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There exist a prime Q ', such that Q
'∩ R
P0

=
P
P0

, but then any prime Q ' is of this form. So, this

one give will give a Q1 in Spec S. So, here it is a prime ideal of 
S
Q0

, Q1⊇Q0 and Q1∩R=P1.

So, such a Q ' will give a Q1 its pre-image would have this property. So, this is the going up

theorem. So, now, let us try to understand these things in terms of dimensions.
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So, corollary, dim R=dim S, again same situation R to S is integral. So, proof. So, we have to

prove that supremum of lengths of chains of primes in R is equal to supremum of length of

chains of primes in S. 

So, we will prove that for each chain here, there is a corresponding chain of a same length on

this side and then the other direction and then when we take supremum this would be fine and

we will prove the two inequalities this way.

So,  let  us  just  first  prove  that  dim R≥dim S.  So,  let  Q0⊊Q1⊊…⊊Q l be  in  Spec  S.  So,

supremum  of  such  l is  what  would  give  us  this  dimension.  This  implies  that  by  the

incomparability  theorem  which  is  part  2  of  the  earlier  proposition,

Q0∩R⊊Q1∩R ⊊…⊊Ql∩R which means any chain that we pick in Spec S, there is a chain of

at least that length in Spec R.



So, now this implies that dim S≤ dim R. You can pick any chain here, you we get a chain of

equal length here. So, the supremum of all such l will be less than or equal to supremum of

lengths of chains of prime ideals inside a Spec R. So, this is this direction. So, this was 2 of

the propositions. The statement what we called incomparability.
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Now for the other direction. So, let P0⊊P1⊊…⊊Pl be a chain of primes in Spec R, by lying

over, this is part 3 of the proposition, there exist a Q0 such that Q0∩R=P0. So, going up does

not assert the existence of  Q0, it assumes for every Q0 mapping to  P0, there is a chain that

begins from Q0, it is lying over which say which said there is such a Q0.
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By going up, we get a chain Q0⊊Q1⊊…⊊Q l such that Q i∩R=Pi for all i. So, now this is the

same argument given any chain inside Spec R, there is a chain of at least that length in Spec

S. So, this now implies that dim R≤dim S.

So, therefore, this is equal. So far the only concrete integral extension that we saw on sort of

sufficiently general was Noether normalization. So, this one now says that, given a given a

finitely generated algebra or a field, there is a map from a polynomial ring finite map.

So, if you look at the map in Spec it is surjective and these two rings are the same dimension

and hence  we should  know a  way to find  the  dimension of  a  polynomial  ring,  but  as  I

mentioned earlier it would take us a little bit work to prove that statement, that it is dimension

of a polynomial ring over a field equals the number of variables, but we will prove that after

we develop a little bit about the dimension theory of Noetherian rings.
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So, just a few remarks. Before we go on to the next, because we have to slightly digress

develop various things to prove to study dimension more generally.

So, let me just make two remarks. One, so Krull dimension of Krull dimension corresponds

to the notion of dimension for topological spaces to the topological notion of dimension using

irreducible sub sets. In other words, a chain of primes P0⊊P1⊊…⊊Pl in R corresponds to 
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V (P0)⊋V (P1)⊋…⊋V (P l), and this is going to be different because for example, P1 is inside

here, but not inside here, other way around, and if we are working if you are thinking about

finitely generated algebras over algebraically closed fields, then one can also write  Z (P1)

strictly containing  Z (P2) strictly containing  Z (P3) and so on. And these are the irreducible

subsets in those topological spaces.

So, giving a chain of prime is the same thing as giving a chain of irreducible subsets in a

topological space and this  is.  So, Krull dimension is really the topological dimension for

Zariski topology. So, that is the first statement and the second is a small observation about

polynomial rings and we will have to come back to these this later we will have to we will

revisit the problem about dimensional polynomial rings a little later.

So, just a remark. Dimension of R [X ] at least dimR+1 , X is a variable for every ring R. This

we will prove, it is not very difficult. The point is that if R is an Noetherian, then this is

actually equality, but in order to prove that we need to understand more about the dimension

of Noetherian rings. So, let us try to give a proof of this.
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So, if P is a prime ideal of R, then its extension is also a prime ideal .
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So,  in  other  words,  it  is  may  the  sense  that,  it  is  not  very  difficult  to  check  that

R [X ]

PR [ X ]
≅ (RP )[X ],  and this is a domain.  If  you join a variable  to a polynomial  rings over

domains are domains. So, therefore, this is a prime ideal.
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If we take a chain of distinct primes in Spec R,  then P0R [ X ] ⊊P1R [X ] ⊊…⊊P lR [X ], we can

add one more element and make it one larger chain which is. So, we continue it here, you

take PlR [ X ]+(X ).



So, one needs to check that the ideal generated by X is not in this extension, and also that this

is a prime ideal. So, let us quickly check that thing.
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So,  R [ X ]

PR [ X ]+(X )
≅
( RP ) [X ]

(X )
≅
R
P

. Well we can first kill this and then X. This is true for any

ideal in particular it is true for prime ideal. So, is a domain if P is inside R is a prime ideal. So

one needs to check that X ∉ IR [X ] for any proper ideal and so, that would tell us that this is

really a new prime ideal and here is the chain of length l, here is the chain of length l+1.

So, therefore, dimension goes up at least by 1 and for Noetherian local rings the dimension is

goes exactly by 1. So, this is Noetherian rings. So, this we will prove after we develop some

notion about of dimension. So, the next is therefore, what one has to do is to understand is to

understand I mean is to prove or study the dimension theory of Noetherian local rings.



(Refer Slide Time: 21:09)

But if you, so notice that, note that dimension of R is, so this is going to this is as a supremum

of chains of primes; so, wherever a chain ends at the ok, that that is going to contribute to the

height  of  that  prime.  So,  this  is  really  dimR =
¿dimRP∨P∈Spec R }¿

¿.  So,  we  would  like  to

therefore; so, in some sense, it is enough to understand a theory of dimension of Noetherian

local rings. So, let us assume this is a local ring. So, we need to only worry about. 

So, we are interested in Noetherian local rings and therefore, this tells us that it is enough to

know for Noetherian local rings. So, the dimension theory of Noetherian local rings is done

was developed by Krull.

So,  the  main  theorem  of  it  proves  that,  dimension  can  be  determined  by  as  two  other

numbers, dimension is equal to some number S and some numbers δ , we will not call them S

and  δ , but we will probably label them late once you get to the theorem and these one of

these numbers is obtained by taking filtration of a module.

So, first of all of this instead of worrying about dimension of Noetherian local ring one can

just  worry  about  dimension  of  a  finitely  generated  module  over  Noetherian  local  ring,

conceptually  there  I  mean  proof  wise  there  is  no  any  extra  difficulty  and  some  of  the

arguments  are  easier  to  manipulate  because one keeps in  mind that  one is  working with

modules and not just quotient rings.



So, in order to do this one has to do some filtrations of modules and their quotients and one

needs to understand a little bit about Artinian rings and modules for that.
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So, let us define that. So, this is Artinian rings and modules, mostly rings. We will just define

what an Artinian module is that is all. Definition: An R module R is any ring, commutative

ring now, R module M is Artinian, if it satisfies either of the following equivalent conditions.
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One, what is called descending chain condition on sub modules. So, this is abbreviated as

DCC.  What  does  this  say?  Every  chain  M 1 descending.  So,  it  becomes  gets  more

progressively smaller stabilizes. So, there is some M n such that there after it is equal to M n.

So,  analogous  to  the  Noetherian  condition  and  two  every  non-empty  collection  of

submodules of M has a minimal element. So, the proof is exactly the same. So these two

conditions are equivalent. So, M has to satisfy only one of them, hence it also satisfy the

other and the proof that these are equivalent is exactly the proof I mean it is just reversing the

containment and maximal with minimal in the proof for ACC from Noetherian modules. So, I

will not prove it in this lecture. So, (Refer Time: 26:10).
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So, this is what is called Artinian and definition, R is an Artinian ring. If it is an Artinian

module is over itself.

So, we will end this lecture with a strange observation about this kind of rings, well it is not

strange, it is just we have not seen this definition so far, so we have not seen that such things

could happen. Let R be an Artinian ring. Then every prime ideal is maximal.
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So, proof. So, let P⊆R be a prime ideal. Then well, let us consider 
R
P

. So, if R is Artinian,

then a descending chain condition will also hold for  
R
P

, so here it would mean descending

chain of ideals. 

So, descending chain of ideals in  
R
P

 lift  to a descending chain of ideals in R and if  that

stabilizes, it will stabilize inside  
R
P

 also or any quotient of other matter. So  
R
P

 is Artinian.

Suppose it is not a field. Let r∈R and r ≠0, r not invertible.
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Then, the chain  (r )⊇ (r2 )⊇(r3)⊇… . So, it is strictly descending. That is, if not there exist

some r there exist n such that  (rn )=(rn+1). What does that mean? It means that there exist

some a∈R such that rn=ar n+1. And now this implies that rn (1−ar )=0 but this is a domain.
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We are working with
R
P

 is a domain. What did we say? So, it is going to be 
R
P

. Since, 
R
P

 is a

domain we will get that 1−ar=0 or in other words we get ar=1, that is r is invertible, but

that we assume it was not invertible this is the contradiction. 



So, this contradicts, this if not part. So, it is strictly descending therefore, R is not Artinian, 
R
P

is not Artinian, this is a contradiction. This contradicts the assumption that 
R
P

 is this.

So, just take some quick look at examples; fields,  
Z

(n)
 where n is non-zero, same argument

k [ X ]

f (X )
 , k field f ≠ 0. So, these are all Artinian rings. Z is not Artinian for the same argument as

what  we just  showed in the proof PID’s.  polynomial  rings,  they are in larger  number of

variables; they are not Artinian. So, this is the end of this lecture. In the next lecture we will

continue studying the structure of Artinian rings.


