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So, in this lecture, we continue our discussion about Integral Extensions, but before that we

just need to define one notion of ideals called height. So, for a prime ideal p of R define

height of p  as ht p=dim R p. This and what is this? 

This is  ¿{l∨∃achain of primes p0⊊ p1⊊…⊊ pl⊆ p. Here it could be equal and in fact, one

should allow for equality at in the supremum.

So,  that  is  just  because  primes  inside  R p are  precisely  correspond  to  primes  with  this

property. So, these are strict inequalities and here one would allow the last one to be equal to

p. Tthis is called height of a prime.
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For an R ideal I define height ht ( I )≔inf
p⊇ I
ht ( p). So, this is the height of an ideal.
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And,  ∀ p ,ht p+dim
R
P
≤dim R. So, why is that? Height of p measures length supremum of

lengths of a chain that starts from somewhere below the minimal prime and goes up to p.

dim R
P

 means, well we will start from 0 of R
p

 and because it is a domain, and then go up to a

maximal ideal, but inside R it is same as starting from p and going to a maximal ideal.



So, on the left side this is I mean this involves a chain of primes through p; well, the right

side does not take, it could take any chain ring. So, clearly any chain that gets counted in this

calculation on the left side also gets counted on the while calculate in the right side. So, we

get and this is a supremum so, we get this inequality and it is a fact that if this is not equality

in general even for noetherian rings.
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We will not discuss such examples, but it is well known, I mean it is known. There are books

describing these examples. So, in fact this is not necessary an equality is one of the problems

in trying to prove or that dimension of a polynomial (Refer Time: 04:59) n variables over a

field is n. In fact, this is true I mean the equality is true in those rings, but one needs to prove

that first or one just be one would just be going in circles.

So, just keep this ok, this is a notion that we need to use when we study ring extensions ideals

in general. So, just question about terminology some books might refer to this height as co-

dimension, but there is it  is a slight misnomer. So, in the sense that it  might give us the

impression that we are talking about the difference of the dimensions, this is the dimension of

some ambient  space,  this  is a dimension of some subspace and we are talking about the

difference when you use a word co-dimension.

So, we will stick to you with the terminology as height. So, one should just keep this in mind

when. So, some books do refer to this as co-dimension, but you know it can be because this it



is not equality here they are not the difference between the dimensions is not the same as a

height in general. So, that is just the just a definition.

So, now, what we want to understand is if you have an extension of rings R to S integral,

well, just one point if you have an integral extension from R to S well we saw from earlier

lectures, what R is not really relevant for the problem. What matters is so; let us call this ϕ.

So, integral extension nothing to do with I mean in general I mean what integral.

So, what matters will be study things is it is ok. So, what matters is so this is the image of ϕ

inside S. I mean whether an element  s∈ S is integral over R or whether all of S is integral

over R; is S finite over R; all those conditions are tested for this image, not for what the ring

is.

You could add many many things in the ring and then make put all of them in the kernel it is

not going to affect the nature of this map. It is not going to affect the nature of the questions

that we study when we look at integral extensions. So, what matters is this. So, hence we will

assume that R⊆ S. So, this is what (Refer Time: 07:49). 
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So, our setup is R⊆ S integral extension and we would like to understand this map little bit

and better. So, here is a lemma and so, this is a topic in commutative algebra where we see

certain techniques come I mean with the sense that localize go modulo this and this it is this

is one where many arguments one does localize this first or go modulo this prime ideal then



prove it and that sort of thing this is one phase where one (Refer Time: 08:37) for the first

time quite a bit.

So, hence the following lemma is a sort of the base case for many arguments. Assume that S

is a domain, then R is a field if and only if S is a field. So, where we assume that S is a

domain.
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We need to assume this so, it just a remark need to assume S is a domain, otherwise k this is a

field in sitting inside 
k [ x ]

( x2)
 contradicts the assertion  x is integral over it but this is not a field.

The reason is we did not assume it is a domain.

So, let us prove. proof of the lemma.
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This is the if direction, if S is a domain then R is the domain; if S is a field R is a field. So, let

r∈R ¿0 }. There exist  s=r−1∈ S because S is a field. So, what does that mean? But, this is

integral over. Therefore, there exist an equation sn+∑
i=1

n

r i s
n−i

=0 in S.

So, let us multiply throughout by rn. rs=1 1 of S, but R is a sub ring. So, it is 1 of R also. So,

this gives 1 multiplied by rn. So, this term gives 1+r (∑
i=1

n

r ir
i−n)=0.

But,  then this  is  an inverse because see  r i∈R.  So,  remember this  is  inside R that  is the

integral equation part and this is inside R. So, the sum is inside R. So, this is satisfied I mean

this sum is inside R and this. So, 1 plus r times an element of R equals 0. So, therefore, r is

invertible. So R is a field.
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 (Refer Time: 12:38). Now, only if. So, there exist some equation sn+r1 s
n−1

+…+rn=0 in S

r i∈R for all i.

Now, among all such expressions pick one with smallest n; so, this is important. We pick the

one in which the degree of this polynomial is the least that is possible.
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So,  for  that  one  then  rn≠0.  Why?  otherwise  we  can  rewrite  that  as

s(sn−1+r1 s
n−2

+…+rn−1)=0  but S is a domain and this is where it is used and exactly this is



the step which would fail in the example I mentioned above. S domain implies that there is a

there is an integral equation of smaller degree. So, this is where domain is used.

So, we can take rn to this side.
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So, this similar way we write s (sn−1+r1 s
n−2

+…+rn−1 )=−rn, but this is invertible. So, this is

invertible. s times something is a unit invertible in S because if it has an inverse in R that will

remain inverse in S also.

So, s times something is invertible, then s times something else would be 1. This implies now

that s is invertible. So, we assume s is nonzero to say that this n is at least something. If s=0,

then you are already done.

And, then this argument will not go through. So, be careful  s≠0. In fact, that is the only

correct statement. So, this is every nonzero element is invertible. So, this is the proof, that

proof of that proposition the lemma.

So,  now we  prove  a  proposition  which  tells  us  substantial  amount  of  given  an  integral

extension of rings what does the map on spec do. This following proposition gives us it is a

good amount of information about that which is not true for many arbitrary morphisms.
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So, proposition:  Let  P∈Spec R and  Q∈ Spec S be such that  Q∩R=P Q. So, this  is  the

image of the map from Spec S to Spec R the image of Q under that map is P. So, this is point

1. Then P is maximal if and only if Q is maximal.

2, Suppose, we have Q1⊆Q2 in Spec R be such that Q1∩R=Q2∩R that is they contract to

the same prime ideal. Then Q1=Q2.

(Refer Slide Time: 18:33)



So, this is sometimes some textbooks might refer at least informally as incomparability. Two

distinct Q’s that contract to the same P below must be incomparable; if one is contain with

the other they must be equal, that is what it say. There are two Q’s in Spec S two primes in

Spec S which map to the same point below with this property that they are comparable, then

they must be equal. So, this is sometimes called in comparability.

(Refer Slide Time: 19:21)

And, 3; this is sometimes called lying over, ∀ p∈Spec R, ∃Q such that Q∩R=P. So, let us

just briefly look at this proposition before we prove it. Proof is not very difficult.

(Refer Slide Time: 20:07)



You just note, 3 says that the map Spec S→Spec R is surjective. So, the finite surjective and

1 says that fibers over maximal ideals of R contains only maximal ideals of S and every

maximal ideal of S maps to a maximal ideal of R. So, this one can think of this as a so, this

one for example, would apply in the case of Noether normalization. So, this is one thing to so

one nice property about these maps.
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So, proof say said that proof is not very difficult. So, what are we given? We are given an

integral extension of maps like this and we want to prove that. So, then we are given some Q

inside here and a P inside here and this maps to I mean I am drawing the arrow not as a map

of say Spec, but now think of it as a point inside Spec S. 

So, this curly arrow here denotes the map in Spec S in the opposite direction Q goes to P, but

remember Q is just a point in Spec S. So, with this thing we can look at  
S
Q

 and  
R
P

 that is

because  P  is  Q∩R this  is  again  injective  and it  is  integral.  So,  if  you have  an integral

extension this is also integral.

If you have an integral extension there and if you do this step it remains integral this also

remains integral. Now, this is the domain and therefore,  
R
P

 is a field if and only if  
S
Q

 is a

field.
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This is equivalent to saying P is maximal and this is equivalent to say Q is maximal. So, this

proves 1.
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Proof of 2. So, let us write P. So, this is the statement where 2 prime ideals of S contract to

the same prime ideal of R and Q1⊆Q2 and we want to show that that is an equality. So, let us

invert elements outside P.



So, we have  R→S and while  this  gives a map from  RP→ (R ¿ )
−1S.  So, this is I mean P

extended to S need not be a prime ideal. It is complement in complement of the extension of

P need not be multiplicatively closed.

What we are inverting is just those elements of R that are outside P. So, invert this. So, this is

integral please check that this is also integral. So, PRP is a maximal ideal. So, notice that. So,

let us call this ring S'. This is local after inverting call it S'.
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So PRP=Q2S
'∩RP=Q1S

'∩R P. Therefore, it must be a maximal ideal of this that contracts

this is maximal by 1, Q1S
' and Q2S

' are maximal in S'.

But,  but  Q1S
'
⊆Q2S

',  because both are maximal it  implies that  Q1S
'
=Q2S

',  but using the

correspondence between primes in a localization and this one says Q1=Q2.

So, we localize here and then we are now looking over things that map on to the maximal

ideal here therefore, there the primes here also must be maximal ideal in the fiber and, but

then  there  cannot  be  a  strict  containment  between  them.  And,  this  is  preserved  under

localization. So, you can go back to the original case, ring.
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So, 3. So, now again we have  R→Sand then we have a map  RP→ (R ¿ )
−1S. This is again

integral and we observed that a maximal ideal here can only contract to a maximal ideal here.
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So, every maximal ideal of (R ¿ )
−1S contracts to PRP which is the unique maximal ideal of

RP. So, let us go back to this diagram we have a maximal ideal here which contracts to PRP

here. So, we start with a maximal ideal here we can contract from here from this corner to

this corner in two different ways. You can contract like this or contract like this you would

get the same result.



And so, contract like this we would get  PRP and then P and contract like this we will get

some Q and then to P. So, contract maximal ideal of (R ¿ )
−1S  to S to get Q in Spec S such

that  Q contracted  to  R is  P.  As we mentioned  earlier  the  last  part  says  that  the  map is

surjective.

So, we will stop here and we will continue in the next lecture with by start with proving what

is called the going up theorem and which is a statement about chains of primes, how they

behave in an integral extinction.


