
Computational Commutative Algebra
Prof. Manoj Kummini

Department of Mathematics
Chennai Mathematical Institute

Lecture - 33
Noether normalisation lemma - Part 2

(Refer Slide Time: 00:14)

Welcome, this is lecture 33. In this we give a proof of Noether normalisation lemma, which is

the  following.  Let  so,  this  is  let  us  recall  what  Noether  normalisation  lemma  was;  so,

theorem. This is Noether normalisation lemma.  It says that if  R is  a finitely generated k

algebra k field. 
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Then, there exist some finitely many z1 ,…, zd∈R algebraically independent over k, such that

R is a finite algebra in other words as a module, which  is finitely generated, finite algebra

over this sub ring, which itself is a polynomial ring because this is algebraically independent.

So, we saw a proof of this last time for algebraically closed fields for infinite fields, where we

did change of coordinates and the change of coordinates ensure that some element in a some

relation among the generators of R can be written in a more in a monic polynomial form. 

And  once  can  be  once  a  relation  among  the  generators  can  be  written  using  a  monic

polynomial, it says that one of the generators is integrally dependent on the other and hence,

the morphism is finite and, then using that we can do we can bring the number of generators

down. So, that was what we did last time.

So, here also the idea is the same, but the proof is a little bit more involved and we will see an

example after this proof that, if the field is finite one cannot really look there are situations,

where one may not be able to find a linear change of coordinates like the one we did last

time. Remember, that was just y i went to some y i minus some appropriately chosen constant

from k times yn, ok. So, that would not be possible, ok. So, now, let us do the proof in the

general case.
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So, it  is  a same idea we so,  let  us say  R=k [ y1 , .. , yn].  And think of R as a quotient  of

polynomial ring k [Y 1 ,…,Y n] in that many variables. And if this is an isomorphism the kernel

is 0, then there is nothing to prove. So, all of this is the same approaches from the last time, if

the kernel is 0. Then there is nothing to prove, because then this itself is a polynomial ring

and it is finite over itself, so, that is nothing to prove. So, then for assume that. 
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Therefore, assume that there exists some nonzero polynomial f (Y 1 ,…,Y n) in the kernel. So,

the idea is again to change coordinates that f takes the form of monic polynomial and that



would  introduce  a  relation  of  little  yn over  some  combination  of  the  earlier  ones,  not

necessarily the earlier wise.

Suppose let us write f=∑aeY 1
e1Y 2

e2…Y n
e n. These are the variables, f is of this form. 

So, now we do we would like to do a change of coordinates so, this polynomial will take the

form of a monic polynomial with coefficients coming from I mean monic polynomial, and

the coefficients of lower powers of Y n may come from the earlier variables, those variables

will change them a little bit.  So, the change of coordinates that we will try to attempt is

change of coordinates.
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We write Y i
¿
=Y i−Y n

r i, but these are integers to be determined, and we will see what we have

to determine. 

So, then a monomial of the form Y 1
e1Y 2

e 2…Y n
e n=(Y 1

¿
+Y n

r1 )
e1
+…+(Y n−1

¿
+Y n−1

rn−1 )
e n−1

Y n
en, under this

change of coordinates. So, this is the expression that we get. So, this we will have a term. 
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So, just this monomial itself will have a term  Y n
∑e iri+¿lower degree term in  Y n coefficient

from  Y 1
¿ ,…,Y n−1

¿ ,  this  for this  monomial  this  term here would be this  monomial  will  get

converted  into  some polynomial,  where  this  coefficient  here  is  1.  And then some lower

degree terms lower degree terms. Here the coefficient is from k and it is 1 so, this looks like

this.

So, recall that f=∑aeY 1
e1…Y n

en  was some coefficient times this one. And we can assume that

ae is a non-zero, otherwise they will not appear in sum anyway. So, we would like to give

these choose these r i’s. So, that each of these monomials will give a term and this monic term

that we get here with unit coefficient are distinct so, that they will never cancel each other. 

And therefore, f will get transformed to a monic polynomial. So, this is just to ensure that

whatever f gets more transformed to has leading, if you write it as a polynomial in  Y n the

leading coefficient is a unit. So, we want to choose r i. So, one way to so, we want to ensure

that f is transformed into a polynomial. 
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Let us say g(Y 1
¿ ,…,Y n−1

¿ ,Y n) that is monic in Y n. So, this is what we want this is the idea is

the same from the other proof, but it is just one requires little bit more work to handle this.

So, one way to ensure that would be to ensure that all these degrees are different for each one

of these e, where ae is non-zero this sum is different. So, one way to ensure that would be and

ensure that would be to choose r i.
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 such that this collection is distinct I mean consist of distinct elements, for all I mean this

collection is I mean this is collected overall e such that,  ae is non-zero, maybe sorry I will



write this set in this. So, this collection  {∑eir i|ae≠0} because they will anyway come into

consideration when we expand y those are the only terms of f, so, distinct elements.

So, you know one easy way to do that would be, choose r i=s i for some large integer s. For

example, s>degree F=max¿∑e i∨ae≠0}¿. 

So, these are the actual terms appearing in it and in that the degree is the largest term, that we

would we would get the sum is the largest so, if you choose an s large enough, then each one

of these e i will be strictly less than s. 

And then if you take something of the form let us say, b1s+b2 s
2
+…+bn s

n this term will be

for various values we every integer which will come as in that form, if the this is different

from with this property this will be different from some other b1
' s+. b2

' s2+… So, this is such

similar term.

So, the various these sums will be distinct elements and hence in this sum when we expand

out this sum precisely one of those terms will dominate.

So, this sum is over 1 through n and rn=1 recall that is how the sum will come. So, just keep

this in mind and. So, one way to ensure this would be to choose a very large s and, then

choose r i to be si and then we will get all of them to be distinct and exactly one term in the

terms of F written as Ys, exactly one term will when we do this and therefore, the that would

ensure that F is a monic polynomial.
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So, without loss of generality f is of the form f=Y n
N
+¿lower degree term in Y n. So, what do

we have? We have 
k [Y 1 ,…,Y n−1 ,Y n ]

(f )
. So, now we may as well call we can drop the star in

the notation, we may as well call them Y 1 ,…,Y n. 

So, this surjects on to R, f is just in the kernel so, the surjects on to R. And in this ring Y is

integral over the sub ring. So, image of Y n is integral over the sub ring k [ y1 ,…, yn−1] of R.

Hence, it suffices to prove the theorem for smaller ring and then we can bring it down till we

actually get that there is no relation among them. So, this is the proof of the general version

of Noether normalisation lemma and so, let us do an example and then we will come back to

this question about finiteness and how to use it or why is it relevant.
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.

So, here is an example so, in the proof in the first proof Noether normalisation lemma for

arbitrary for infinite field we observed that a linear change of coordinates would work. So,

here is an example where linear change of coordinates would not work in the proof. 

So, later after we understand dimension a little bit we will try to come up with an example,

where  there  is  no  the  algebraic  independent  elements  are  not  even  linear.  So,  that  will

requires a some of understanding to be able to calculate something. So, that we will revisit

after we understand dimension a little bit better. 

So, here we are taking a polynomial ring in two variables over finite field of 2 elements and

then we look at the ideal (xy (x+ y )). So, it is and then we ask for its associated primes it is

expected, it was just ass. So, this is the command to compute associated primes. So, it is as

expected because these are irreducible elements, they are all distinct primes and if you take a

product like this it will not have any other associated primes requires a little bit of thinking,

but in the polynomial ring one can show that. 
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So, we would like so, in our proof we change the first n-1 variables and then we changed the

we did not change the last variable. So, we would like to change x, but not y well, this is a

finite field and x has to go into a non-zero vector; a nonzero linear polynomial something of

the form x+α y  remember, that is what we did in the proof. 

But there is only one choice then x. So, we want to define a change of coordinates so, change

of coordinates is a ring homeomorphism it is ring automorphism. So, there is only if you want

to keep y fixed, there is only one choice and x has to go to x+ y. So, this is a map from R to R

and x goes to x+y and y goes to y fixed. And we ask what happens to the I. So, we are trying

to find whether linear change of coordinates of this variables x and y will give us a suitable

Noether normalisation for 
R
I

.

So, if you do that here then we see that I does not change, I is this is same as that right

(x2 y+ x y2), but in the proof if you remember the kernel needed to have something monic in

y after the change of coordinates or the change of coordinates this is affected so, that we get a

monic polynomial in y.

But here there is only one change of coordinate that is possible and that yields same f, and

there is not going to be any monic polynomial in this ideal monic in y in this ideal and so,

then we cannot do anything.



So, this is an example of a case where over a finite field we are unable to find a linear change

of coordinates, which introduces or which gives us a monic polynomial in the kernel of that

surjective ring map. So, surjective ring map again what I mean is R surjects on to 
R
I

, but just

the proof that we just saw if you instead of taking x goes to x+y or if you take x goes to x

plus some power of y it might work.
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And so, let us check that so, here we change x goes to x+ y2 squared and y is fixed. So, let us

call that ψ and here is a monic polynomial in y.

So, this is what this proof does, I mean this proof says that this is always possible. And if you

think about how we constructed this polynomial which I want to explain, but if you think

about why is it that if you take this I, we are unable to get a monic polynomial that there is

only one ϕ, and ϕ(I ) is itself ϕ of the generator of I is itself. Then you would be able to do

this in other fields also finite fields also. 

So, that is the proof of Noether normalisation lemma. So, this is proceed by induction, sorry.

So, now, what we want to understand is. 
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So, let us say k is a field, we will come back to algebraically closed in little later and R is a

finite type k algebra. And this means that by Noether normalisation, there is some polynomial

ring some z1 ,…, zd polynomial ring such that this is a finite map. In particular its integral.

So, now we would like to understand. So, this gives a map from Spec R to Spec A. In this

particular case it will also give a map from maximal Spec of R to maximal Spec of A, but that

is a difficult theorem which we will not attempt to prove or at least in specific examples

maybe we can work it out in the exercises, but in general it is not is I mean one that needs a

proof.

But  it  gives  us  a  map  like  this  and.  So,  we will  continue  our  discussion  about  integral

extensions and finite map, which will prove that fibers of such a map are finite. They are so,

this is so, if you think of the, if k is algebraically closed then we can think of Spec of A by it

is maximal ideals and maximal ideals corresponds to a point. So, we can think of this as some

space k d. So, at least k algebraically closed, this is, and this is some X. So, X maps to this is

what the picture is.

The points in this one is some subset of let us say k n. So, some subset of k n variety maps on to

k d we will prove in this lecture or the next that this is actually a finite at the point fibers are

finite we will prove also that this is surjective. And so, then we would like to understand. So,

we could use this as a way of understanding X. 



So, that we want to pursue now a little  bit.  So, morphisms and then if  you are finite  or

integral morphisms what do the fibers behave I mean what can we say about their about their

fibers that is the next topic. So, before that we need to introduce definition. 
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Let R be a ring the Krull dimension of R is ¿ {l|∃a chain P0⊊P1⊊…⊊Pl of prime ideals in R}.

So, this is what a Krull dimension is. So, let us look at a couple of examples. 

So  one  of  the  things  that  we  will  study  is  the  how  dimension  behaves  under  integral

extensions. So, we need to develop a few more definitions, but let us quickly look at example.
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Dimension of a field is 0, this is k field, because there is only one prime the maximal ideal

which is 0. And hence it is 0. Dimension of Z, the only to start with the only sort of rings that

we know are Zq and maybe fields that at least we know exists.

At  least  and dimension we have to  start  counting from I mean,  if  you want  to  build up

something we are for algebra, we were start measuring it from somewhere. So, now, what

about dimension Z? So, there are only 2 kinds of prime ideals 0 or the ideal generated by p;

p a prime number and these are also maximal ideals are exactly this. 
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And hence therefore, dimension of Z is 1. So, Krull dimension is a just written dimension and

now, there will be a little confusion often we will have to look at k algebras and we will have

to use the word dimension to mean it is vector space dimension or Krull dimension. 

So, in that case I will try to be consistent with the following usage where for vector space

dimension I will call rank, and dimension would be Krull dimension. In any case if there is a

confusion I will clarify, so dimensions Z is 1.

So, which means this is always a chain and you cannot do anything better I mean you cannot

insert more elements here or the here or in the middle. So, cannot extend it any further. So,

similarly  dimension  of  R  equals  1  for  every  PID,  same  argument;  maximal  ideals  are

generated by irreducibles and though the only prime ideals are either maximal or the 0. So,

any chain will look like this. So, this is one definition I mean, one example.
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And another so, just half example the other half is, what we will struggle quite a bit to prove.

So, we will  if k is a field,  then dimension of  k [X1 , .. , Xn ] is at least  n, the reason is the

following that  0⊊ (X 1) ⊊ (X1 , X 2 )⊊…⊊(X 1 ,…, Xn) the ideal is generated by all the variables

this has length n. 

So, this is a chain of primes. And there is no immediate way that one can insert things in

between or extend or anything to that is this is already a maximal ideal. So, you cannot add



anything here, you cannot add anything to the left, if this is already 0 and these have so, these

are not we in between this there is no one cannot insert anything. 

But remember the definition is of dimension is supremum of such chains. So, we will work a

little bit to prove that dimension of this is equal to n, but that requires some work that there is

no some other chain of primes,  that will  go in to some other maximal ideal  with greater

length. 

And so, one of the there is some difficulty we will face some difficulty in proving it partly,

because we do not actually know the structure of Spec we do not yet know the structure of a

spectrum of this ring.

So, that is the so, this is the end of this lecture. In the next lecture we will discuss start further

properties of integral extensions and then we will slowly so, then we will have to spend time

understanding Krull dimension more properly and that is what we will do. 


