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So,  in  this  lecture  we  continue  with  discussing  Integral  Extensions  and  we  first  prove

statement about transitivity of integral extensions. So, here is the proposition. So, it has some

four parts. This is part 1,  Let R→S and S→T  be finite morphisms.

So S is  a finitely  generated R module and T is  a  finitely generated  S module.  Then the

composite map  R→S is finite. S is a finitely composite map  R→T  is finite. T is finitely

generated R module through the composite map. So, this is the first statement.
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 So,  now,  R→S is  some  ring  map  and  s1 ,…, sn∈ S integral  over  R.  Then  the  subring

generated these elements, see by this we mean the image of R inside S and these elements,

but we will stop writing it once we get used to this thing is finite R algebra.

Now its finitely generated R module. Three, same as a first statement, but now for a integral;

Let  R→S and  S→T  integral extensions. Every element of S is integral over R and every

element  of T is integral  over S, then the composite map  R→T  is  integral.  Four, the set

{s∈ S|s is integral
R

} is a subring of S containing image of R, in other words it is a R sub

algebra of S.

So, you just look at the statements. First statement is that, if you have two finite morphisms in

the composite, it is a finite morphism. Second statement is if you have a ring map and some

finitely many integral elements, so the sub algebra generated by that finitely many integral

elements is actually a finite R algebra, this is only finite type, a priori this just means finite

type, but because these are integral elements it is actually finite.

And third is if you have two integral extensions, the composite is also an integral extension

and final is the set of integral elements inside a ring, is actually a sub ring. So, this is called



the integral closure of R in S. So, as so we will come back to that in a minute, but let us prove

this.
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So, proof. 1 is an exercise because it is done; this is exactly how one would prove that if you

have two finite extensions of fields, then the composite extension is a finite extension. So,

this is the same proof just repeat it, I mean with appropriate changes of words and you will

get  this.  So,  first  one  is  an  exercise.  So,  for  the  second  one,  we  want  to  show  that,

R [s1 , s2 ,…, sn] is finite.

So, this is what we want to show, but we can use 1 alright. So, we can start with R, then

⊆R [ s1 ]⊆R [ s1 , s2 ]⊆…⊆R [s1 , s2 ,…, sn].  Suppose  we  prove  that  individual  ones  of  finite.

Then the composite is finite. 

Just  one  more  observation,  s2 is  integral  over  R,  hence  this  intermediate  subring  also.

Similarly, any si here is integral over the subring generated by R and the previous elements.

So,  at  each  stage,  it  is  just  adjoining  one  integral  element.  So,  if  you  prove  that  each

extension here is a finite, then the composite is finite. So, by induction and 1 we may assume

that, n equals 1. So, now let us go back to the previous proposition. So, we are just interested

in; so, s1 integral over R. Now, let us go back to the proposition from the previous lecture.



So, this now implies that R [s1 ] is finite over R. So, in the previous lecture we found various

conditions for equivalent to an element of an extension ring being integral over the base ring

R, one of which was that the subalgebra generated by that element is a finite algebra. So, this

proves 2.
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So, now 3; we need to prove that every element of T is integral over R. So, let t ∈T   and we

want to show that t is integral over R.

We know that t is integral over S. So, let s1 , s2 ,…, sn∈ S be such that t n+∑
i=1

n

si t
n−i

=0. This is

because t is integral over S. Let S' be the subring of S generated by R and s1 , s2 ,…, sn. So,

this is the subalgebra these are integral over R.
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So, s1 ,…, sn are integral over R. So, S' is finite over R. Now this element t here satisfies an

integral equation over S'. So, this subalgebra generated by S' and t is integral over R. So, this

is finite over R. So, now, look at the extensions R⊆ S' this is finite.

And this is S' [t ], this is finite, that is because t is integral over S', composite of two finite is

finite. Therefore, this is finite. So, S' [t ] is a finite R algebra, containing t, which now implies

that t is integral over R. So, this proves the thirds that integral extensions their the composite

of two integral extensions is an integral extension.
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So, now for 4 we need to show that let A={s∈S|s integral
R

}.

So, we want to show that, ∀ s1 , s2∈ A , s1+s2∈A∧s1 s2∈ A.

So, now let us look at these extensions. R⊆R [ s1 ]⊆R [s1 , s2 ], these s1 and s2 themselves are

integral. So, this is finite, this is also finite and s1+s2 and s1 s2 are elements here. So, these are

elements inside a finite algebra. So, therefore they are integral.  s1+s2 and  s1 s2 belong to a

finite R algebra; so, they are integral. 

So, this proves this proposition.  So, I mean what it says is, composites of finite is finite.

Composites of integral is integral and it also proves I mean makes this 2 is the others thing,

that if you have a finitely generated algebra generated by integral elements; then it is actually

a finite algebra. So, that is true and final statement is the integral closure of a ring in a larger

ring is a ring.
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So, we will define integral closure definition. Let R→S be a ring map. The the ring which

we just proved, {s∈ S|s
integral
R

} is called the integral closure of R in S.
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And we say that R is integrally closed in S, if its integral closure in R in S is R itself. Just one

observation, when we say this is integral closure, it should at least in principle suggest that, if

something is integral over this ring its already integral over R, the only then you can think of

it as a closure. So, that when you apply that operation twice you do not get anything new.

So, which is indeed true like the case is indeed true, suppose that there is some t inside S,

which is integral over this ring, but then we go back to the previous proposition to conclude

that t is integral over R, which means t would have been in this set. So, it is indeed a closure

operation. So, just one more definition, let R be a domain and K its field of fraction. The

integral closure of R in its field of fractions is called the normalization of R.
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So, this is definition, we will not worry about normalization exactly at this point, but we will

develop more about integral extensions, but we can nonetheless look at one example,  Z is

integrally closed and the field of fractions of Z is rationales and so it is  integrally closed in Q

.  So,  how do we do this?  So,  let  
a
b
∈Q be  integral  over  Z and  assume without  loss  of

generality that they are co-prime integers, that is gcd (a ,b )=1. 
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So, then we have ( ab )
n

+c1( ab )
n−1

+…+cn=0 for some integers c1 ,…, cn. This is what integral

means, multiply by bn. So, then we would get an+bc '=0 for some integer  c '. There is only

n−1copies of b here. So, when you multiply everywhere we would get a b in all these terms.

Now, what does this say? This says that an∈ (b). Now, if b is 1, there is no issue because this

is true and if b is 1, then 
a
b
∈ Z. 
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If  b≠1, then let  p be a prime number dividing b, then this one says that  an∈ ( p)  because

these are inside b and ( p) is maximal ideal containing (b).

So which now implies that p divides a, but then this contradicts the hypothesis that a and b

were chosen to be relatively prime. So, you can essentially rehash this argument to prove that

every UFD is integrally closed in its field of fractions, which you will do in their exercises.

So, let us look at another example.
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So,  the  same  argument  will  prove  that  polynomial  rings  are  integrally  closed  in  their

respective field of fractions. But here let us consider slightly different.

k [ x , y ]

y2−x3
 is not integrally closed in its field of fractions and the easiest way to understand that

is to rewrite this as somewhere we have seen earlier. So, note that this ring is k [t 2 , t 3]. So, the

field of fractions contains t; fractions is k (t ), rational function field in one variable, because

notice that t=
y
x

.
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So, that is inside here and t is there in the field of fractions and t is integral over this ring. Let

me just use a different variable now. Z2−t 2=0 over k [t 2 , t 3]. This t2 is from here, this Z2 is a

variable and that is where we substitute t. 

So, therefore k [t2 , t3 ]⊆k [ t ]⊆ k (t ). This is an integral extension or a finite extension and this

is integrally closed here, that is the essentially that, that UFD’s are integrally closed, one can

just redo the argument for Z in this case.

So, we have this is the field of fractions. Between this in the field of fraction, there is this ring

which is integral and that is integrally closed in its field of fractions. So, this is the picture for

this one.

So, now, we come to one of the results that I informally mentioned earlier, which is that

given any finite  type  algebra  over  a  field,  there  is  a  polynomial  subring over  which  the

algebra is finite. 

We only mentioned about maps between Spec, but this is a slightly stronger this is a stronger

statement and this we will prove not immediately, but right now we will use it to derive to

draw  applications  one  of  which  is  I  mean  the  main  part  of  which  is  to  prove  the

Nullstellensatz.
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Before we state the theorem we need a definition. So, let k be a field and R a k algebra. So,

definition;z1 ,…, zd∈R. So, the definition we do not need to assume that its finite type, but

we are taking finitely many elements inside R, is said to be algebraically independent over k.

So, let us just say what we are saying. So, k→R is a ring map and here we have taken some

element z1 ,…, zd.

So, we have seen this earlier that if you have a ring map like this, then it extends to a map

uniquely from a polynomial ring over k mapping the variables to this and scalars mapping

accordingly. So, the map from  k [X 1 ,…, Xn ]→R,  X i going to  z i. So, these are variables is

injective.
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So, the map extending the given map k to R. One of the first few lectures, we have given a

map from k to R and a bunch of finitely many elements. So, that is the; so, maybe I should

just say this is a polynomial ring. So, that extends to a map form the polynomial ring to the

same R itself extending the given map. 

So,  this  is  injective.  In  other  words  the  algebra  k [z1 ,…, zd] inside  R  is  a  polynomial

subalgebra.  So,  we say that this  is a algebraically  independent.  They behave exactly  like

variables.

(Refer Slide Time: 29:08)



So,  in other  words  k [ z1 ,…, zd ]⊆R is  a  polynomial  k subalgebra.  There  are  no algebraic

relations among them, that is what algebraically independent. So, here is what is the theorem

called Noether normalization. 

The same Noether  as  Noetherian,  Emmy Noether  Lemma.  Let  k  be a  field,  R a finitely

generated k algebra. Then there exist algebraically independent z1 ,…, zd such that R is finite

over the subalgebra k [z1 ,…, zd ] which is a polynomial algebra.
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So, this is the theorem called Noether Normalization Lemma. This has lots of applications in

various contexts studying of rings that are finite type of over a field. We will not prove it

right now. We will first draw some corollaries from this. First draw one corollary from which

we will prove the one version of the Nullstellensatz.


