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This is lecture 30. So, in this we continue the discussion about examples of Morphisms

and fibers of that to come to the as a starting point for the next question to a next topic to

understand.
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So, back similar example,  because I want projection to the X axis, let  me orient the

picture this way, the arrow as this way.  

So, this is the picture and the variety of this would be so,every point where either x

vanishes or x vanishes, which is just the union of the axis, and here is just the line X. So,

now, let us take some  here. So, we get   So, let us work that out. 
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So, . This is the ideal inside  that we need to worry about. But, this is

the  same as  same as  ,  because  we are  just  substituting  x as  ,  just  one

observation, if alpha is 0, it is subsumed in this case but let us just make sure that we

understand. 

If,  is non zero then it is fine even. if  is 0., then we just get  So, even if

x is 0 then it is still fine. 

So, this is the thing. However, the behavior is quite different in the two cases,  depending

on alpha 0 and alpha is non zero. What the fiber is very different. So, let us look, let us

work these both out let us just work for  and . The fiber is .

So, this corresponds to the point (1 , 0). Because, if  is non zero, although the I mean

in both cases the description of the ideal is as a formal thing it is correct, there is nothing

wrong,  this ideal is depends on  what that alpha is.

If, we take. The ideal generated by  and Y are the same. So, we can just take if  is

0, then we would just get 



, but this is the Y-axis right every point on the Y-axis satisfies this equation. So, which is

what the fiber over some point , , here is   that is what goes to this point. 

However,  to  the  point  0  here  the  entire  Y axis  maps and that  is  the.  So,  there is  a

difference in earlier case all the maps were finite, may be the fibers were finite, but here

that is not the case. Although, I mean if you look at in some sense there is not much

difference,  which  is  your  polynomial  ring  in  two  variables,  we  went  to  modulo  1

equation and then we are just looking at the map from one of those variables to this. 

So, in that sense there is not much difference between this and the previous problem, but

there is which is what we just saw. So, now, let us look at another let us modify this with

slightly different fashion. 
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So, now we consider a  k[t] and here is just 

.And, this map , which is now . 

So, in other words when t when we say  t to some value , we are setting x + y to some

value  . So, that would be an entire line ok. Some line I mean if you draw in a real

picture it will be some line with the so, this is the x, y gives that t is just this line. And, if



you take some  here, it is not just the point t is not same as X, t corresponds to some

line here which so, let us do that so some  here.

So, here is . Here it means, . Now, irrespective of the value of  this

has exactly this has one or two solutions. So, let us do that. 
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So, if  is not equal to 0, the equations   and  has two solutions.

You can work that out. And, if   we get   which is really if both these

functions vanish it can only vanish at the origin right. X and Y have to vanish so, either x

is 0 or y is 0, but as soon as x is 0 this forces y also to be 0. So, this is has only so, the

max spec of this corresponds to one point which is just the origin. 

But, as we saw earlier it has some additional structure to it not just 1 point, but whatever

it is when we go back to this picture, the fiber over alpha is this not a point, but it is a

line like this   

 ok. So, it intersects the given variety in only infinitely many points. 

So,  the fiber  of  this  map has  the fibers of this  map are finite  while  in  the  previous

example, there are fibers which are not finite. So, we will come back we visit this point



after we discuss a few we prove some results I mean we set this up and prove some

results.
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So, it is in general true, in general it is true that  we will prove this in the next lecture or

the one after that,  a  finite type algebra meaning, finitely generated algebra over a field,

then there exists a polynomial ring A  such that the fibers of this map.

Let  us  say,  algebraically  closed  field  for  this.    A  morphism   such  that

 the fibers of this map fibers are finite. So, that is the picture that we

had here. So, here is some finitely generated algebra R, there is a polynomial ring A with

this as finite. So, this is in general true it is. 

But, it is not always true, that you one could have sort of bizarre behavior about fibers,

but  here  we  some  somehow  find  nice  fibers.  So,  we  need  to  develop  enough  to

understand and prove this theorem. We will prove something stronger than this and this

is what we want. 
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So, now we start a section called  integral elements, integral extensions. So, this is what?

So, let R to S be a ring map . So, given a map , We say that so, let   say that

s is integral over R  if. 
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 s satisfies a monic polynomial in R[X]. So, just so, what does that say, it says that. So,

there exist   ,  such that when we substitute  X=s in  ,

when you substitute s for this one right, we get 0. 



So, just 1 point when we say . So, when we say so, here we have to evaluate things of

the form . This remember is just . 

So, whenever we are not seeing sorry this is phi we are not saying this is injective, and

whenever we multiply two elements inside here the action is always through this ring of

morphism.

I mean that is a standard thing we often do not write this we just say  that is what

this means.
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Say that, S is integral is integral over R if  is integral over R for every . So,

let us look at some examples.

First one suppose K is a field and F an algebraic extension of K, then F is every element

of F is integral  over K. This is nothing different  from just algebraic  in this  situation

integral means algebraic there is nothing different. 
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Example 2; we could just think of this in a formal setup, that we could just adjoint a

variable X and then just kill polynomial like this. And, the new ring will the image of X

will automatically be integral. 

So, if you take  where, p(X) is monic . Then, the image of X in 

the residue class is integral over R. That is the another example, it is sort of formally

constructed, but . 

3) we another ring that we are we have seen and we have become familiar with in is this

 . 

And, so, inside this look at the sub ring  . Now,  so, this is the s that we

are looking at  satisfies ,  from the sub ring R. This is from R this is  is

from S.
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So,   is integral over  . In that ring and finally, a non example. So, this is a an

exercise if you take Z and you take some invert something let us say we just invert 2,

. So, this is localizing. Inverting powers of 2 is so, in so,  is not integral over

Z. That is if you try to write half as to satisfy an integral equation we will fail. So, do this

as an exercise. So, it is not integral over S. 

So, we would like to understand integral extensions. 
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So, definition  ring map, say that this map is a finite map or S is a finite R-algebra.

If S is a finitely generated R-module through this map, through this map. 

So, then the terminology is a little confusing, we talk about finite R-algebras and finite

type R-algebras, finite type is as an algebra it is finitely generated, finite is as a module it

is finitely generated. So, and any algebra has a module structure through those map so. 
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So,  now  here  is  a  proposition.  Let   be  a  ring  map  right  ,  then  the

following are equivalent 

1) s is integral over R.

2) the sub ring which is generated by the image of   of S. the subring is finite

over R. And,

30 there exist an R-subalgebra  of S. So, it is a subset and it is a sub ring, but the map

from  goes through this . So, it contains the image of phi. So, it is that is what

we mean by sub algebra? 
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Such that   is a finite R-algebra. So, let us just revisit the thing. So,  is a map and

we take an element. First statement that element is integral over R, the second statement

is the sub this is so, this is an example of a sub algebra. So, it is a sub ring of s containing

the image of  and some other things. 

So,   this sub ring is finite over R and  s is inside . That  is contained inside

some finite subalgebra, not necessarily just that. So, that those three statements and the

claim is that these two things are equivalent to S being integral proof 1 implies 2. 

So, if you consider the elements so, let   be in R  such that,  ,,

because it is a monic polynomial. This implies now that  is generated as an R-

module by so think of it as a polynomial ring. If, you have a polynomial ring let us say k[

x], it is generated as a module; as a module by the powers of the variable. 

So, here it will be generated by  , but as soon as we see an  we can use this

expression to bring that degree down. So, this is generated by up to . So, let me just

repeat this as it is; as it is written here. So, this just says how the  act? 



So, for now we can ignore this. When we adjoint an element like this, we have to worry

about all it is powers . But, So, it will be a polynomial expression in the s, s will

be like a variable I mean it will be a polynomial in which s  takes the value of that

variable takes the value of s and coefficients are from this ring. So, that is what we are

considering. 

And, but as soon as we see an  we can use this expression to bring the degree back,

degree  down,  using  elements  of  R.  So,  this  is  generated  by  this.  So,  it  is  finitely

generated module.  So, remember this finite algebra means finitely generated module. 
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So, it is 2 implies 3 is immediate, because here it says one specific subalgebra is finite.

Here it is just asserting some algebra is finite. 

So, 2 implies 3 is immediate and we so, take . So, take and 3 implies 1. So,

let  we  will  use  a  determinant  trick.  So,  let   the  R-linear  map,  given  by

multiplication by s. So,  and then that is not we have to specify it for every element

of , but multiplication by s.
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So, this is a finite module. So, we can apply the determinant trick which we learned a

few lectures ago. So, what do we need? We need f of this to be inside some ideal times S

and then there is some statement, but here we can take ideal to be R itself. 

So, what does the determinant trick give? There exist an n such that n depends on the

number of generators for S’ , . 

So, if it were inside some ideal we would get some extra conditions on these things, but

here we are just taking the unit idea. Such that   as an R-linear map. 
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But apply this to . So, f(1) = s,  . So, . 

And,  now  apply  this  whole  function  to  s  and  then  we  would  just  get  therefore,

, this is the. So, we will stop this lecture here. Next is again a property

about transitive nature of integral extensions and finite extensions. So, we will prove that

proposition in the next lecture and then, we will then, discuss what is called noether

normalization lemma. 

And, then we will get we will first use an noether normalization lemma to prove the

version  of  (Refer  Time:  29:19)  as  we are interested  in,  after  that  we will  prove  the

noether normalization lemma. Not just in one lecture, but in the next few lectures. 


