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Welcome to the 3rd lecture in Computation Commutative Algebra. We continue our study

about ideals, define prime and maximal ideals and then we lo at some operations on ideals.
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Definition: let R be a ring and I  an ideal. I  is said to be a prime ideal, if for all r ,s∈R, rs∈ I

implies that, r∈ I  or s∈ I . So, for example, 2Z is a prime ideal of Z. In fact, for all non-zero

n∈ Z, nZ  is a prime ideal, if and only if n is a prime number. 

One has to for the statement to be true one has to put non-zero n, because if we take n to be 0,

then the 0 ideal is a prime ideal, but 0 is not a prime number. So, the statement will not be

correct as it is written. So, here we only lo at I mean. So, maybe one should just say that, 0 is

a prime ideal of Z.
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Definition: A ring R is an integral domain, and often it is just we just say, a domain. We will

drop the word integral some, because it is some very unlikely to cause confusion. If for all

non-zero elements r ,s∈R, rs ≠0. And then, proposition: which is an exercise. R is a domain,

if and only if  0 is a prime ideal. We said last time that in one of the earlier lectures at 0 is

always an ideal in any ring. Here R is a domain, if and only if 0 is a prime ideal. 
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Now, we lo at another kinds of another kind of ideals. An ideal I  of R is maximal if it is a

proper ideal and there does not exist an ideal  J , such that  I  is properly contained inside J ,

which is also a proper ideal. In other words, I  is maximal among the proper ideals of R. 

So, one can show the exercises to show the following: 

1. R is a field, if and only if 0 is a maximal ideal. If r is a field, then that it has only two

ideals, 0 and the full ring. So, then this is clearly maximal and one has to show the other way

round, that if 0 is a maximal ideal then every non-zero element is inverteble. 

And another exercise 2. Every maximal ideal is prime, but the converse is not true. So, give

an example of a prime ideal that is not maximal. So, give example of a ring and a prime ideal

in it. In fact, you have already seen it. But I would not tell you what it is.
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So, here is an important property about rings. Sorry before we put another definition. Let

I⊆ R be an ideal . Then we can give a ring structure. So, we know that I  is a subgroup  of ¿

under the additive operation.

So, we can talk about the quotient group that is also has an induced action. The group can be

given a ring structure, meaning given a multiplication on top of this. So, to do we have to say

what  is  multiplication?  What  is  additive  identity?  And then one  has  to  check that  these

properties satisfies the definition of a ring, but please do that ring structure by setting. 

So, elements of this set 
R
I

 are cosets; which we write r+I , and then some s+I . So, these are

cosets  and  we  define  the  product.  So,  this  is  the  definition:  (r+ I ) ( s+ I )=(rs+ I ),  for  all

r ,s∈R. So, then let us just observe that the additive identity is the 0 of this group is this the 0

of the group which is a coset of 0, 0+ I  and multiplicative identity is the coset of 1 and it is

1+ I . 
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So, this is called the quotient of R by I and it is again denoted by 
R
I

. So, rarely there will be a

confusion whether one is referring to the quotient group or the quotient ring, but we will

make it clear a few things. So, this is what it is. So, now, let us lo at an example on how this

is done in Macaulay. 
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So, this is an example that we saw in the first lecture. We asked Macaulay  ZZ /17 and it

understands it correctly and this is what it said, it is a quotient ring. So, now, let us look at

more one more example on finding the kernel. 
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So, this goes back to the example that we saw. The first example, that we saw of a ring map.

Polynomial ring in two variables mapping to polynomial ring in one variable. X goes to t2, Y

goes to t3 and we asked for its kernel. 

Then we ask for the quotient during R modulo the kernel and then we define a map. So, this

will be part of the exercises that, if there is a map from R to S then, there is a ring map from

the quotient ring 
R
Ker f

 to S . So, existence of this; you will verify in the exercises and then

there is an induced map and you should run these lines of code in Macaulay2 and understand

what the output says.

So, I will not show you the output. This is part of the exercises that you should do with

Macaulay.  So,  here  is  the  important  property  which  relates.  There  exists  a  bijective

correspondence,  between  two  sets.  Ideals  of  R  containing  I  and  the  other  set  that  we

considering is, ideals of 
R
I

.



Now, what is the correspondence, if you have an ideal J here which contains I, that goes to

the residue of I and what exactly do we mean? This we mean r+I , r∈ J . So, we just look at

the cosets of elements inside J. So, it is just . So, what ? And from this side . For if you take

an ideal of 
R
I

. So, maybe I should have said something before this. Let me add a line here. 

What is that? The map from R :→
R
I

, r goes to r+I . Let us call this map π. Like this is a line

that  I  wanted to add is  a ring map is  a surjective ring homomorphism. So, one needs to

observe that thing. And if you have an ideal K here, then send that to the inverse image of K.

So, there is a bijective correspondence. So, there are some things to be checked. That if you

have an ideal containing I, then if you take on this side, it is an ideal of 
R
I

 and if you have an

ideal of 
R
I

 call it K, then its inverse image under the map is. So, this is a surjective map. 

So, you can just. We can just anyway talk about its inverse image. It is an ideal containing I.

So, there is a bijective correspondence like this. Sorry we are. The proposition is not done yet

.
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Under this correspondence prime ideals, prime ideals of R containing I. So, if you consider

this set, this is a subset of the other one. This corresponds to prime ideals of 
R
I

.

Similarly, you can replace prime by maximal here, and here also maximal. So, from what we

have said earlier, this is a subset of that, this is a subset of this and both of these are I mean

subsets of this. So, there is a bijective correspondence here, which restricts  to a bijective

correspondence  on  these  subsets.  And  what  is  a.  what  do  we  mean  by  bijective

correspondence?

So, in this particular situation, we have defined a function from the left side to the right, here

we have defined a function from the right side to the left and both these functions are identity

maps. So, if you start from a J here, go there and apply this map you will get J. Start from a K

here, go here and then take its inverse image and then apply this operation we will just get K. 

So, these are that is why these are bijective correspondence. And under this thing this is there

is this map and proof. So, whatever I just said is the proof that bijective correspondence. So,

now, I will  just sketch .  So,  proof.  So, the first part  is  check that,  the two functions are

inverses of each other. That is straightforward. 

Now, the question is, if you have a prime ideal here. So, I will just prove the first thing I will

just prove I will just prove this. So, let P containing I be a prime ideal. We want to show that

P
I

 is a prime ideal of R
I

.



(Refer Slide Time: 17:48) 

So, one can check that as follows. So, 
P
I

is a prime ideal of 
R
I

 if and only if 

R
I
P
I

 is a domain,

but what is this? This is just 
R
P

 which is a domain. And that is actually the condition that P is

a prime ideal. 
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So, now what about the maximal ideals? Use the fact that, Q is maximal if and only if, 
R
Q

 is a

field. Use this and then apply the same argument as one did what one did for prime ideals and

similar argument. So, now let us look at couple of examples in Macaulay.
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So, there is a simple command. So, here we take the ring  R=QQ [X ,Y ], then we take the

ideal generated by the product  XY  and then we ask, is it  Prime? So, there is a command

called isPrime, this is a capital P, isPrime ideal this? And it says its false and that is, because

in X is not there in this ideal, Y is not there in this ideal, but the product XY  is there. 

So, it is not a prime ideal. But of course, when you use commands like this, one should be a

little careful. So, let us try in a very similar example. 
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So, now we lo at the same thing. I mean similar thing. R is a polynomial ring in one variable

over the integers, then we ask, isPrime ideal (X)? Which it is, because polynomial ring in one

variable modulo (X) would just be integer which is a domain. 

So, this we know that this is a prime ideal, but if you ask Macaulay that question it says,

expected base field to be QQ and actually few more. When I took screenshot I chopped the

lines, but this is an error that is, because the thing has not been programmed to handle even

cases like this. 

So, before we use this commands one should be one should verify the context in which it

would correctly solve. So, it is just a minor warning when one tries to use these things. So,

now, we look at some operations on ideals .
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The first thing is called Extension. So, f :R→S is a ring map. I  is an ideal of R. Now, we can

just look at f ( I ). Is this an ideal? This is not an ideal, in general. In fact, one does not have to

go very far to find an example. 2Z is an ideal of Z. Take f to be the natural map from Z to Q

which  is  the  inclusion  map.  Integer  sitting  as  rational  numbers  with  denominator  1  and

f (2Z )=2Z . 2Z is the set of even integers.

This is not an ideal of rationales and that is because rational the set of rationales is a field.

There are only two ideals, 0 or the whole ring and this is just it is neither 0 nor the whole

ring. So, it is not very difficult to see this thing. 
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But  definition:  The ideal  of  S  generated  by  f ( I ) is  called  the  extension  of  I  to  S.  It  is

sometimes called extended ideal or the extended ideal. And notation often is just IS. 

Quite often the map is clear from the context. In any case, this notation means ideal generated

by the image of I under f  inside S. f  is defined to be this map from R to S, X goes to t2 and Y

goes to t3. So, we ask f (X ) it is a t2.
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Now, we ask  f  of ideal generated by  X 2 ,Y  and Macaulay has been programmed to realize

that f  just taking the set theoretic image is not going to give an ideal. So, just take the ideal

generated by it. So, Macaulay already outputs ideal generated by it and X 2 goes to t4 and Y

goes to t3 and f of the ideal (X2 ,Y ) is the ideal generated by these . One more example, so

this is the example in which we asked.
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So, let us unravel this thing. So, the point of this example is to we do not need to label all

these things all the time. So, here we take the map from ZZ to QQ and Macaulay knows what

that map is. So, that is between this bracket and this bracket. Apply to the ideal generate by 2

that is 2Z. So, this is going to be an ideal of Z. You are applying this map to this ideal and

then we ask is it equal to rationales? 

So, this equal to the set of rationales and it says it is true. And the point first point it is already

mentioned it is not necessary to label all these things, one can just compute it like this. And

the brackets here that I have used are to demark it mark the expression here. So, Macaulay to

understands what we wanted to understand.

So, you should do an exercise in which you remove various pairs of brackets here and see

which ones work and which one is do not. 
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One more definition: contraction of ideals. So, again f :R→S be a ring map. This time J is an

ideal of S. And we ask. So, what do what can we check? f−1(J ) is already an ideal of R . And

f−1(J )  called the contracted ideal.
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So, now let us look at. So, here we look at R, which is polynomial ring in one variable over

the rationale. Take R=Q [X ] and S=Q [Y ]. I defined an ideal like this J1=(Y ), J2=(Y 3). So,

just note that the semicolon suppress the output and we do not need to see. If we put this



command  we  know  what  it  is  going,  what  it  does,  we  do  not  need  to  see  the  output

specifically. 

So, we can put a semicolon. And if you put a semicolon, you can give multiple commands in

the same line itself. So, I just put three of them in one line, two of them in the next line. So,

this is just f. So, what does this say? This says X the under this map X goes to Y 2. Then we

ask. So, the command in Macaulay is preimage (f ,J 1). So, this is just f−1(J 1) and here is a

f−1(J 2).
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And here so, I just show you the relevant output preimage  (f ,J 1), this is  f−1(J 1). It is the

ideal generated by X. Preimage of J2 under f is the ideal generated by X 2 and this is an ideal

of R. So, you should verify these calculations by hand. So, now we continue little bit more of

these things. 
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So, next is radical. The radical of an ideal I  is the set, which we denote by the radical symbol

√ I  and √ I={r∈R|∃m≥1 suchthat rm∈ I }.

The radical ; so, the first point that we would like to make notice that the ideal I  itself is in

the radical of I , that is I⊆ √ I . Because you can just take for an element of I. We can just take

m to be 1. So, I here sorry that is the definition here we are liking some properties. Another

property is that, radical of I  is an ideal. 

So, this I will sketch the argument in the exercises. And, few more properties that again, you

will work out in the exercises.
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So,  before  that  we  just  say  definition:  say  that  I  is  a  radical  ideal  if  √ I=I .  So,  some

exercises. 

Exercise 1. Prime ideals are radical.

2. Let us say that, if we have a family of radical ideals, {I λ}, λ in some index set Λ. Then the

intersection ¿ λ∈ Λ I λ is radical.
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A definition: The nilradical of R, it is the radical of the 0 ideal. In other words, elements for

whom some  positive  power  is  0.  And  an  exercise,  radical  of  I  is  the  pre-image  of  the

nilradical of 
R
I

 for the natural surjective map R→
R
I

. 


