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So,  in  this  lecture  we continue  with  studying Saturation  and we look at  a  slightly  more

complicated example and again we will not be able to explain all  the computations in it.

Then, we will study a little bit about how saturations are done and then we can revisit this

problem.



(Refer Slide Time: 00:35)

So, let us look at the example. So, this is taken from this book of Cox Little O’Shea, Chapter

4, Section 6. So, the ideal is generated by (xz -  y2,  x3 –yz) in a polynomial ring in three

variables. And so, we just do some field finite field of 100, this is a prime number. So, I is an

ideal by this.
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So, just by looking at this we notice that every term of every generator of I involves x or y.

So, I ⊆(x, y). In other words, Z(I), so, when we say Z(I), it is not over this field, but it is over

the algebraic closure of the field, where it was defined. It was defined; it was defined over



some field, but when we talk about Z(I) we mean the algebraic closure effect, but anyway

that is not in the calculations I it is just a remark.
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So, Z(I) will contain I is contained inside here. So, Z(I) will contain the I, so Z(I) contains

this. But what is this, what is the point where x and y would vanish? It is a z -axis. So, we

will try to saturate this ideal one variable at a time that is what we learnt. We need to remove

the component corresponding to x, y then we need to saturate this ideal here. If we; I mean

we will see this. So, we will do it for one generate at a time. So, let us saturate x and then I 2

saturate y.

So, then we just notice that  I 1 and I 2 are the same. And so, these this and this is the given

generator and we have a new generator x2 y− z2, which is not in the ideal given by x and y.

But, since these two saturations are the same, so, there it is equal to I:( x , y )
∞ .

So, in the next lecture or later in this lecture we will study some approach just to computing

saturation. Right now, we will just continue with this thing. So, we need to understand this

prime ideal this ideal now, what does it look like.

So, the observation that we make is this is the kernel of a ring map from R= K [ x, y, z] →

K[t]; x →t3, y→t4, z→t4and the exercises I will give a hint on how to prove this. So, in other

words this given ideal I 1  or  I 2with the which are same is actually prime ideal. So, what

have we concluded so far?   



We have concluded that here is a prime ideal and the any other prime; so, this I mean as soon

as you saturate x we get this prime ideal or as soon as you saturate y, we get this prime ideal

which means any other prime ideal any other minimal prime which is not this; which is not

this I 1  or  I 2 must contain x and y but notice that (x, y) itself is a prime ideal containing

this ideal. So, there are only two minimal primes; I 1and (x, y). 

So, now, we need we will; so, for the component corresponding to I 1 ,it itself is the primary

component. I mean, associated prime and the primary component ideal are the same because

it ok, but, for the other one let us take an element inside here. So, notice that, ¿
x2 y− z2

¿
¿

) is not

there in this ideal. So, if you saturate I with respect to this element, we would pick out the

component corresponding to x, y and it just says (x, y). 

So, therefore, we now have concluded that I =  I 1 intersect this,  I 1 intersect (x, y) and we

asked I mean sorry I take it back. We have concluded that for the minimal components are I 1

intersect (x, y), but there could be an embedded prime, which we do not know. 

So, we ask. So, we intersect I 1 and the ideal generated by x and y and we ask intersect that

and then we ask is I equal to that and it says it is true. So, which means, we have now found

the primary decomposition which is I = I 1 intersect (x, y).
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So,  this  example  we  will  discuss  after  we  study  some  techniques  behind  computing

saturation. So, this is about computing saturation.
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So,  recall  that  if  R is  Noetherian  and when we say computing  it  mostly  refers  to  some

polynomial ring or a quotient of polynomials ring, but we will develop these ideas in slightly

generality. R - Noetherian, I and J ideals, then I : J∞=I :Jm, for all sufficiently large n, this is

what we know. 

So, if you want to find the saturation its sort of enough to understand how to compute colons.

Hence, so, in in principle we could just compute some I : J , I : J2 , I : J3and at some point try to

guess whether it has stabilized and then use that as and decide whether that is a saturation.

So, that is the, this one we could do that. So, if you can just learn. So, to compute I : J∞, we

need to know just I: J, I mean different J as J runs over various things. So, you know we need

to know to compute I: J , some colon of two ideas.
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But  how  do  we,  I  mean  what  about  these?  So,  if  say   J=(g1 , . .. , gn )let  us  say,  then

I : J=. ∩
i=1

n

I :g i. So, algorithmically if we know how to intersect and how to take colons with

one element then we can do this. So, therefore, we need to learn two things; how to intersect

ideals, and how to take colons.
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So, without loss of generality for now as far as colon is concerned we can assume that J is

principal.  So, proposition;  let  R be a Noetherian domain,  I an R -ideal  and g  ∈R. Write



I ∩ ( g )=(h1g , .. . , hm g )  as, so every generator of this is going to be divisible by g as h1 will be

a multiple of g. 

 Then,  I : g=(h1 , . . . , hm ). So, just let me read this once more. So, we have an ideal and an

element g and we want to know what I: g is. So, to compute I: g we first express I intersect g.

So, I ∩ ( g ) would be would be finitely generated, and every generating set will be multiple of

g. Every element in the generating set would be a multiple of g, because it is a subset of g and

then the colon is just this  h1 throughhm. So, we are not saying that h1 through hmis unique or

anything. Just take any generating set, it will have this sort of a form and then just remove the

g from them.

So, that is a proposition. And, just one more observation; this is not I mean we will not prove

it, but notice that if you take I: g and then multiply them by elements of g it actually lands

inside this intersection. It is inside I by definition, and it is also inside g because there are

multiples of g. So, it is does land inside that intersection.
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Proof:    h1 g∈ I .  Therefore,    I : g⊇ (h1 , . . . , hm )).  So,  this  proves  one  inclusion.  And this

inclusion does not we did not use the fact that it is a domain, it is just. So, now let us do the

converse. 



So, let  a∈ I : g. This implies that ag∈ I ∩ ( g). Therefore, we can write it  ag=∑
i=1

m

r ihi g.
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So, therefore, we can write g (a−∑ r i hi)=0 . Now R is a domain. So, a∈ (h1 , . . . , hm )which is

what  we wanted to  prove.  So, this  is  where domain  is  used.  So,  this  gives us  a way to

compute I:g. So, let us go back where we were we wanted, we wanted to be able to take

colons well we wanted to do saturation. 

We wanted to do saturation that we concluded that if you can intersect if you take if it if one

can compute colon ideals arbitrarily then one can do saturation also. For colon ideals we have

to do for taking colon ideals we need algorithms to do two things; one intersects ideals and

then take colons of ideals of principle ideals. 

So, the principle ideal part is what we just described doing one once, but that itself involves

taking an intersection. So, it might be useful to learn to come to do intersection first. So, let

us do that now.
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So, this is now, we will restrict ourselves to a computational setup where we can actually do

these things. Let k be a field, R=k [X1 , . .. , X n]. I=( f 1 , . . . , f m ) and J=(g1 , . . . , gm )both are ideals.

Let S=k [t , X 1 ,. .. , X n ]. Then I ∩ J=(tI+(1−t ) J )∩R, so this is an S ideal contracted to R. So,

let us just read this.

So, this settles the question this gives us a way to compute an intersection of two ideals in a

polynomial ring , which can be used now to just to address this part of intersecting I with the

principle ideal and then somehow we have to divide this that is.. And then, it also takes care

of this intersection of these colon ideals. 

So, essentially if you understand this I mean if you can use this theorem then we will be able

to do saturation by hand and with the help of a computer. Of course, I can ask you to saturate,

but that  is not what we meant.  So,  we will  prove this  theorem and then go back to that

example.
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So, first of all  I  mean I  hope this  is  clear what is  meant here.  Take,  so this  is the ideal

generated, they should just write. tI=( t f 1 , . . . , tf m ) and (1-tJ) = ( (1−t ) g1 , . . . , (1−t )gn ). So, it is

an S- ideal and that contractor R is would be I intersects J. 

Proof: Consider  f ∈ I ∩ J . Now, so, what does it mean to say that f ∈ I? So, this now implies

that  tf ∈ tI   and (1−t ) f ∈ (1−t )J , because f  ∈I∩ J. So, now this implies that f which is the

sum of these two things,  f ∈ tI +(1−t )J . So,   I ∩ J ⊆ (tI+ (1−t ) J )∩R. So, this is one f is an

element of R; so, it is inside R, we get this; so, now the other direction. 
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So, let  f ∈ tI+(1−t )J  . So, now, we can write because it is inside here, we can write f(X) = g

(X, t) + h (X, t) where  g (X ,t )∈ tI   and h (X ,t )∈ (1−t ) J .We just saying that f is in the sum of

these two ideals, so take one part from here and one part from there.

So, now, let us look at what happens when we put 0 for this; so, put t= 0. Nothing happens to

X because t does not appear in it at all. We get f(X) = g (X, 0) + h (X, 0), but what are these?

Well, this is so, g(X,0) = 0 and  h (X ,0 )∈ J , so it is going to be t times some element of I, but

S some element t times some S linear combination of generators of I, not an element of I, but

an element of the extended ideal. 

So, S linear combinations of elements of I times t. So, when you put t equal to 0, we just get

this to be 0, and here we would just get some h(x), which is one can check without much

difficulty that this is actually inside J.

So, when you substitute 0 here. So, we can write h (X, t) as (1-t) times some element inside

the extended ideal of J to S. So, it is linear combination of the g’s with coefficients coming

from S. When you substitute  t = 0 this just becomes 1. So, we can take that out. Then, the

generators are untouched and the coefficients we put t = 0, which means we just get their

degree 0 part t which is just some elements of R. So, this is in J.
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This says that  f (x )∈J . Similarly, put t = 1, to get  f (x )=g (x ,0 )+h (x ,0 )∈ I+h (x ,0 )=I+0.

So, f(x) ∈ I ∩J . So, this is the; this is the proof of this theorem. So, now, we have I mean an

algorithmic plan which is what; so, if you if you want to intersect two ideals.
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So, let so, with no notation as in the theorem. Give lex order with  t> x1>x2>. . .>xn, then

compute a Grobner basis for (tI+ (1-t)J) S.
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And so,  this  would  now,  imply,  so  from this  now take  from this  Grobner  basis,  select

elements that  do not involve t  and this  gives Grobner basis, for I  ∩J. And then, we can

repeatedly we can do it for principal ideals their intersections etc. to now get semi colon and

intersections. 

So, let us just do this not the full thing, but in part in the previous example. So, this is again

the same example continued example that we saw in the last lecture,  which is R = ZZ /

101[x,y,z]. So, just any field not very big, so, the computations are faster; x, y, z; ideal is

( xz− y2 , x3− yz ) .
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And,  we would now like  to  saturate  x and saturate  y.  So,  let  us  see  how what  we just

described now, we will let us try to do that, let us illustrate that. So, now, we construct this

larger ring t, x, y, z, monomial order gets lex because we wanted to use it for elimination and

then we just take t times. So, we need to use a sub command, this is the; if you have same set

of symbols variables like x, y and z refer both in R and in S.

So, then we can if you just write sub (I, S), it would just extend the ideal and now treat x, y, z

as elements of S. So, please look it up in this is sub is for substitute. So, please look this up in

itself in my column and so, t times; so, this is just extended ideal t times the extended ideal of

I times (1-t) x. So, the x here refers to x of S which is why we did not have to put a sub there,

ok. So, we get some ideal here and then we would now we need to eliminate t from this ideal.



So, we asked for to eliminate and I did not print it, so what is this; eliminate (J, t)/f  some

function here. So, this is an abbreviation for the apply function. This is the same thing as up,

so eliminate (J, t) will give some list and now to that list apply this function that is, so it gave

some generators. Now, the ok, so this is just programming issue.

In all these in this context the variables x, y and z refer to those in S\R, but here we would

like to construct an ideal R moving in any case t is not there. So, what are we doing here?

Take, so take this list. So, yeah, so eliminate (J, t) applied to this function would just say

would just rewrite the function, so eliminate (J, t) is this list, but then thought of as elements

of S. So, we are just using a sub again to convert it to elements of R.
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Use R just to say now the variables refer to element those of R, and then we ask it to divide

these elements by; so, this is a, so I refers to not the previous output, the output before it

which means to the output of this list here. So, to each element in that list each element I in

that list divide I by x, but when we do this, it goes into what is called the fraction field of R. 

So, given a domain integral domain one can localize at the 0, at the compliment of the 0

prime ideal and get a field which is this will be exercises this, so and then so, you will get an

element in the fraction field of R, but of course, these were divisible by R by x, so that we

know. So, therefore, we just convert it back to R. 



So, for example, when we apply that run that command to this we would get you would drew

x from here and x from there; so, − y2+xz. Here x2 y− z2 and this is what the saturation was

for x. Notice that when you saturated this is what we have got; y2−xz, z2 −x2 y  and x3− yz

and notice that is exactly what we got here.

So, this is the end of this lecture and in the next lecture we are we will discuss start discussing

a new topic which is about, so first would be sort of an introductory lecture on what these

morphisms between rings being for Spec. And, then you will use that as a motivation to study

what is called finite morphisms or integral morphisms. 

And, in that  course of discussing that  we will  prove theorem called Hilbert’s  Noetherian

normalization lemma and from which we will derive a version of Nullstellensatz, from which

we will prove the Nullstellensatz that we had used earlier.


