Computational Commutative Algebra
Prof. Manoj Kummini
Department of Mathematics
Chennai Mathematical Institute

Lecture - 27
Saturation — Part 2

Welcome to lecture 27. So, we continue our study about Saturation and try to come up with
some way to identify primes that have certain containment properties and then we will see
some Macaulay? examples and in the next lecture we will look at some ideas behind the

behind computing them algorithmic Computation of Saturation.
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So, in the last lecture recall that I:J"=. n I:a,”. So, this is all in R- Noetherian ring and I
i=1

and J are ideals and this is J is generated by {alj..., a,}, this we saw last time.

So, if we want to find a way to saturate elements it might be useful to understand saturating

with respect to 1 element. So, how large and we also know that we also saw that, also

I[:a”=1:4", for all N sufficiently large. So, we saw these two observations, I mean these two

points in the last lecture and how large should this N be?
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So, I will give one example which is relevant to these geometric discussions, but there are
other ways one can understand this and more will be in some other variations of this will be

there in the exercises.

So, let us prove one proposition in this. R - Noetherian and I - radical ideal, a € R. Then

I[:a"=1:q foreveryn >1. So, I will get saturated by a at the first step itself for a radical ideal.
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Proof: So, this sort of an argument that we see in this proof is somewhat typical in arguing
about colon ideal. So, this will give you some familiarity to solve some of the related
problems in the exercises, . So, we will first show that J: ¢>=] : g. So, what does I mean how

does that follow?

So, first of all there is always one containment note that anything that multiplies a into I will
also multiply a square into I because I is an ideal. So, [:qC1TI:a’ So, let b&eI:q” Then

ba’€ [, butlis an ideal.
(Refer Slide Time: 04:36)
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So, this is because I is an ideal and this implies that ba € 1. So, this is why I is its own

radical and which was what we wanted to prove which is that b&I:a.
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So, now let us look at now let us look at let p&T:q™" .This implies that bg™" is inside
sorry, let me take a different, sorry once you have done the above argument it is easier to

argue it (Refer Time: 05:56) this way.
(Refer Slide Time: 06:00)
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So, what does that give us? So, for every as what we have shown is for every a, I:a=1I:d"

Now apply this to a squared because that can also be done. So, then we get [:q=1: a?Vk>1.
because if you do it with this the square of a square would be a to the fourth and square of

that and so on and so we it will go on like that.



So, we will get that there is this for an infinitely many exponents of a I: a to that exponent is |

.a.
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So, now given any n. So, let n € N, n>3 then there exists k such that 2* < <2**".

So, then :q=I:a*CI:a"CI:d’ =I:q thatis the proof.

So, this is I am not saying that going to this exponents of tools typical of such of these
arguments, but these sort of manipulations that we look at some element then try to
manipulate and extract some more information from it and so on. This is sort of one has to do
these sort of arguments in trying to understand these problems. So, this proves one example
one case where one does not have to do lot of saturation the first colon itself uses the

saturation.
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So, now let us go back to looking at associated primes proposition. So, R - Noetherian, I and

J ideals , pEAss and J ¢ p. I mean p that are associated to the

, then pEAss(II2

R
1.0

saturation of the J saturation of I are associated to I and will not contain J. So, this is a way of

picking out certain associated primes .
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So, by earlier proposition of proof . So, by an earlier proposition we know what the saturation

is, we just have to this is just the intersection of saturation of individual generating set . So,



let J be generated by n elements by earlier proposition by an earlier proposition there have

been many. I:J"=. n I:a,”. And we have seen that if we have intersection of finitely many

ideals.
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So, let us write it here (I;j"") n w i=1]:a”

. So, we have this is may be. This is we have R linear maps .

This is an isomorphism or equality because these ideals are the same and then this is an

inclusion map . p is associated to this. So, ) injects into this. So, it injects into this and if it

has to inject into one of those things it must be associated to one of those elements , because

the associated primes of this is the right.
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So, this we saw associated. So, therefore, P € Ass . And if we

. i=
1

have a direct sum of modules then the associated primes are the individual, the union of the

individual associated primes 1 and therefore, p is associated to 1 one of them.
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So, without loss of generality p EAss

e

I:q,

So, we can replace J by a principal ideal. So, without loss of generality we just have to prove
that a, is not inside. So, let us. So, we if we show the theorem for a principal ideal thena,

will not be inside p and hence J will not be inside p .
(Refer Slide Time: 12:26)

and a,& p that would be proof for J also. So, without

So, enough to show thatp € Ass (?

loss of generality J =(a) . So, instead of calling it a; we will just call it a.
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So, then so, we want to show that p € Ass i and a ¢ p.Let us again this is sort of the usual

again a rehash for various arguments that we have used earlier.

R
So, let m be such that 1: g*=71:a™ . Then arguing as earlier again note m -7 and the
a

quotient is I + g™ that is not allowed for us now and p is associated to this p s associated to

. R
this. So, I mean — = 7—7 .
b (I:a )
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. So, we prove the first part. We want to prove the second part now

So, therefore, p € Ass (?

which is not in p. So, by way of contradiction assume a&€ p . Note that there exists some
x & I such that the annihilator of x in R/I which is the same thing as annihilator of x in R mod

thought of it is an R modulo. So, which is the same thing as I : x. sorry I apologize I made a

mistake here sorry there exist.

The assumption is that p E Ass

R
m) We do not need to use this conclusion just use this I
el

mean start from there itself there exists an x¢ ] :¢" such that p :(I; a”’) - x. but what does this

say so, but ( I: a’") x=1: (a’" x) this is a property about colon ideals which ah, not just principal

ideals here any ideal which you will work out in the exercises.
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So, we have this p=T: (am x) but we assumed that. So, by we have assumed that a&€ p. So,

+1

which now implies from here that g ¢" x € rThence x&[:a"

but where did we pick x? x&1:ad" , but this now implies that [:q™"'DJ[:q"which is a
contradiction because this was a stable value and the contradiction came because of this
assumption, contradiction came because of this assumption, this assumption here. So,

therefore, a is not inside p. So, that is the end of this proof.

So, this gives us a way to construct to sort of incrementally determine associated primes of an
ideal by sort of looking at saturations. So, one more proposition this is mostly of some
geometric trying to reinterpret all these things in terms of the geometry coming from

nullstellensatz.
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Corollary again R- Noetherian, I and J ideals . Then, V( I: ]°°):V I N V | J|closure in Zariski

topology. So, this is not entirely surprising given this proposition that, sorry given this
proposition that by saturating out J we have removed associated primes that contain J. So,

this is not really surprising that we have removed some part of V( I).

So, I have written this in terms of an arbitrary Noetherian ring, but one can specialize the
same situation where we take R to be a polynomial ring over an algebraically closed field
and. So, instead of writing V here we can write Z and prove the same I mean same statement .

So, that is not difficult .

Proof: So, we will prove that the two inclusions . So, this containment left is inside right,
other way around sorry this containment. So, let us take a p that is inside here. So, let not
inside here because remember this is a closure of some set and this is a closure in Zariski

topology. So, this is closure in Zariski topology .

So, if we take an element inside here and then forget the closure just the V(I)\V(J) then if you
show that inside is inside the set this is closed. So, it is closure is inside here. So, that is all
we will need to prove. So, let pEV[I|\V|(J]. So, let aEJ\ p . So, now, we will try to

saturate this element.
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Let pe]:J"some m. So, ba"€1, but ¢"& p . So, bE p, a is not inside p. So, what does a

conclusion we chose an element b that is inside 1.

So, this one says that J: J"C p , p was chosen here for every m. So, [:J*, J saturation of I is

inside p and that is exactly the statement .So, therefore, therefore, p & V(I J °°) .
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Since V of an ideal is always closed we see that V( I). So, what we just showed is V(I)\V(J) is
inside this thing. So, it is closure is also inside. So, this is one direction, right side is inside

the left side .

(Refer Slide Time: 23:00)

So, now the other direction . So, now, let us take a prime containing this. So, let p be a prime
ideal, such that J: J*C p, So, what does that mean? It means that there should be a minimal

prime containing this which contains I : J . So, this implies.

1:J°)

therefore, there must be a minimal prime containing this which is inside p. So, let us take q

So, let qEMin , such that p contains g, p is some prime ideal containing this

R . - o .
suchaq& Ass( , saturation every minimal prime is associated.

\1:7]
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and of course, J is not inside p. So, this is J is not inside

But this implies now that & ASS(?

q. This is by the previous proposition , but now what is p. So, p EV/|q| that is because p is a

prime ideal containing g, but how do we I mean how do what do we know about.

So, let us see. So, pev(q):@gv(ﬂ{v(j) , but what is V(q) in terms of a closure

operation, it is the closure of the singleton set just containing q, that is because this is just

definition means all prime ideals containing q .

So, this 1s V(q) is a closed set and it is the closure of this singleton set and, but this is inside.
So, gEV|I) and g€V (J] . So, this q the set containing q is a subset of V(I)\V(J) and it is

closure therefore, is inside here also and that is what we wanted to prove.

p that was in V(I) an arbitrary p that contained I : J* is inside this. So, one can also rephrase
this to study irreducible components of varieties inside k", but that we just restating this the

same .

So, we will do a quick example about saturation going from the previous from last in one of
the earlier lectures, we will do it in Macaulay more thoroughly what we did it by hand and

then we look much more slightly more elaborate example in the next lecture.
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The example (ix, vy, uy + vx) C K[u,v, %, y| from an earlier lecture.

In [1]: Huecauley?
R = 22/101[u,v,x,y];
I = ideal "ux, vy, uy+vx";

Ideal of R °

Note the monomials in [; it might be useful to saturate with respecig t

In [2]: %macaulay2
L

So, this is the example from an earlier lecture. So, as I. So, we have a polynomial ring in. So,
ignore these lines polynomial ring in four variables u, v, x, y same thing as what we were
discussing last time. Ideal in this the output was it says it is an ideal. So, these lines are output

the offset lines are input .

(Refer Slide Time: 27:03)
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n [2]: FHeeeautey?

L

2
ideal (x, y , vy, uxy)

Ideal of R

1 is still present.

In [3]: 7/macaulay2
I:u™2

So, then we asked for I : u. So, then it says x, y*2. So, it would have in some way calculated
we will discuss how these things would these things are calculated in the next lecture or

maybe after that. And so, it just calculates this it says x is there x is there and if x is there,



then y should be there, u, y should be there . So, it saturates this one, before we saturate we

justI:u. So, if we do I : u we get this thing.

(Refer Slide Time: 27:37)

1 is still present. NPTEL

In [3]: ¥/macaulay2
I:um2
ideal (y, x)

Ideal of R

(x,y) is a prime ideal of R, and rz € (x,y) implies r € (x,y) for eve

Hence (I: u2): u" = (I : u?) forevery m, [: u¥* = [ :u? = (x,p)
We could also have done:

Tn [41: YYmacaulav?

So, this is still a u. So, this is not the saturation. So, let us do it I : % So, I : y*here and then

we get this output which is (y, x) ideal of R.

(Refer Slide Time: 27:55)

In [3]: Yimacaulay2 i\
Inu2 NPTEL

ideal (y, x)

Ideal of R

(x,y) is a prime ideal of R, and # € (x,y) implies r € (x, y) foreveryr € R.
Hence (I : 1) : u™ = (I : u?) forevery m, [:u" =1 2= (xy)
We could also have done:

In [4]: %/imacaulay2
saturate(I, u)
saturate(I, v)
saturate(I,x)
saturate(I,y)

So, now let us see. So, (x, y) is a prime ideal of R and if ru € (x, y), it would say that r €(x,

y) for every r € R. So, after this (I: /*): y" = I:u’*for every large m.



So, that is the saturation . So, this is one way of taking these colon successively and figuring
out when it stabilizes in small examples we can do and this is what we did. We could also just

give the Macaulay2 command called saturate and so, this is what we did here .

(Refer Slide Time: 28:41)
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ideal (y, x)
Ideal of R
ideal (y, x)
Ideal of R
ideal (v, u)
Ideal of R
ideal (v, u)

Ideal of R

Primary component of I corresponding to (x, ) is the same as of [ : 4™,

So, we just asked to do saturate with respect to all four variables and here is the output,
saturation with respect to u, saturation with respect to v, saturation with respect to x and then

y as expected. So, this is what .

(Refer Slide Time: 28:52)

Primary component of I corresponding to (x, y) is the same as of [ : . A
Hence the minimal components are (x,y) and (1,v). NPTEL

In [5]: %imacaulay?
I == intersect { ideal "x,y", ideal "u,v"}

false

There is an embedded prime, which contains (1, x,y).

In [6]: %imacaulay2
apply(tolist (1..5), k => I == intersect {ideal "u,v", ideal "x,y", I + (ideal "u,v,x,

{false, false, true, true, true}
List

Fork 2 3,1=(uv)n(x,y) N (T4 (u,0,x,y)").
This is a primary decomposition of I.
P Y




So, now with the stuff that we have studied , the primary and some exercises, the primary
component of I corresponding to (x, y) is the same as that of I : ¢** . So, therefore, the

components the primary components corresponding to the minimal primes are (x, y) and (u,

V).

So, this part requires you to do some exercise which says that not just associated primes, but
the primary components themselves are preserved the same relation would be there for when

you do saturation. So, after that exercise this will be clear .

And then we asked to intersect the ideal “x , y” and “u, v’ then we asked is it same as I and
Macaulay says no. So, which means that there must be a non minimal embedded non minimal

associated prime what is called an embedded prime , but let us see what the calculation says.

Calculation says every there is only one associated prime that does not contain there is only
one associated prime that . So, there is only one associated prime that does not contain u
which is (y,x) similarly for v just (y, X) . So, every other associated prime other than these

two must contain all the four variables which is what we asked we see we conclude here.

There must be an embedded prime which must be it is just means must contain all the four
variables, but once it contains all the four variables it is a maximal ideal and therefore, it is a

it must be a prime associated prime, there is no there is something bigger .

So, then we just I we . So, this is code which I sorry I will type this line in the exercises I it
has gone outside. So, I will type this in the exercises apply to. So, we are running a apply

command which is from elements of this list.

So, to list 1..5 means construct I mean constructed list which elements 1 2 3 4 5. So, take 1 2
3 45 and to k we ask this question is I equal to something here . The something here is
intersection of u, v, X, y and a third ideal which is I plus the ideal of all the variables to the
kth power, sorry that is gone outside this fail. So, I will describe this example in the exercises
again. So, there is. So, what we take is I plus this ideal to the kth power that is what this

expression is.

And then we ask whether I is equal to this intersection and for the first two values one and

two the answer is false and third, fourth and fifth onwards it is true and what we. So, this is



what I what I have written for k >3, I=(u|n(v|n(x, y|nI+[x,y,u,v/, | mean the ideal

generate by the variables to the kth power.

This is a prime ideal, this is a prime ideal with distinct different associated primes and this is
a primary to the maximal idea. So, this is also primary and hence this is a primary
decomposition of k. I mean we did this example I mean by hand earlier and it shows that

primary decomposition is I mean except for the minimal primes this is very non unique .

So, we will stop here, we will discuss the next example in the next lecture.



