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Welcome to lecture 26, in this lecture and the next will sort of wind up our understanding of

primary decomposition. And, also learn about computing them or some strategies, well not

exactly to program to compute them, but essentially how to use Macaulay 2, or some other

computation algebra system to start trying to solve some problems. So, we will learn these

techniques in the next, in this lecture and the next, and also see some examples being done on

Macaulay.
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So, here is a proposition. So, most of this these results are not they are sort of building on in

the previous lectures. And geared towards being able to compute associated primes primary

components on a incrementally, like the example that we did in the last lecture. Suppose it R

is a Noetherian ring, and I radical ideal. Then, I has no embedded primes. 

That is the associated primes of  
R
I

 so, typically there is a often used abuse of terminology

when we say, I has no embedded primes what we really mean is 
R
I

 has no embedded primes,



so please keep this in mind. So, here we really mean 
R
I

 has no embedded primes this is all of

them are just the minimal associated primes. 

(Refer Slide Time: 02:08)

And, the proof is; the proof is based on the following observation. If we can write as an

intersection of prime; if you can write an ideal as an intersection of prime ideals, which are

themselves not comparable pair wise incomparable to each other to another, then that must be

a primary decomposition.

So,  note that  
I=√ I=. ∩

I ⊆ p
p=. ∩

p∈Min( RI )
p
,  but  if  you are intersecting  then we only need to

intersect the minimal primes, and that is exactly what we just said in the proposition. And,

these are pair wise distinct and if we can write I as an intersection of these things, and it says

that I does not have any; I does not have any other primary associated primes.
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Next,  so  a  geometric  viewpoint  so,  this  is  also  what  we  started  with.  So,  let  k  be  an

algebraically closed field,  R=k [X1 ,…, Xn ], and I an R ideal. Then first statement, but first

statement has nothing to do with I. 

1) For every prime ideal p, Z(p) is irreducible, this is really not a new results I just wrote it

down in this to complete this discussion. 

So, you know recall Z(p) was this is what we had at the very beginning called V(p). So, this

is {a∈k n : f (a )=0 for all f ∈ p}. 

(2),  
Z ( I )=. ∪

p∈Min( RI )
Z ( p )

,   so, this  equality  is the irredundant  irreducible  decomposition of

Z(I).
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So,  the primary decomposition  gives  information  about,  the  irreducible  decomposition  of

Z(I). And 

(3), if this is sort of a converse to the earlier statement. If Z(I) is irreducible, then the √ I  is

prime. So, these are not exactly new results in the sense that, we are essentially going to

rehash arguments that we used earlier to prove this. So, let us prove 1.
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So, 1 is the statement that for a prime ideal Z(p) is irreducible. So, let J1 and J2 be R ideals

such  that  so,  whenever  we  say  let  me  just  remind.  So,  whenever  we  say  topological

statements about Z(I), it comes from the topology the Zariski topology on  k n, which is the

same as because k is algebraically closed points of k ncorrespond to the maximal ideals of this

ring.

The maximal  ideas  of  this  ring is  a  subset  of  Spec of  that  ring.  So,  Spec has  a  Zariski

topology, which the maximal ideals the set of maximal ideals the maximal spectrum of R, it

gets as a subspace topology and that is identified so, maximal Spec as I identified with k,

maximal Spec of R is identified with k n. And, that gives a topology on  k n . So, this is always

with respect to the Zariski topology.

The  ideals  such  that   Z ( p )=Z ( J1∪J2 )=Z (J 1 J2 ).  Therefore,  every  element  inside  here

therefore, for all  f ∈ J1 J 2 , f ∈√ p=p. So, in other words  J1 J 2 , and last time we saw in an

earlier lecture we saw that, if you have a product of ideals inside a prime ideal this means that

one of them is inside J1⊆ p.
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In other words,  Z ( p )=Z ( J1 ),. And this is and therefore, it is not the other one is not this is

redundant. So, then this becomes redundant. So, you can remove it and then it is irreducible.

So, Z(p) is irreducible and the final statement is a sort of a converse to that, but let us prove 2

before that. So, we need to prove that two sets are equal Z( I) is the union of these things.  



So, one is  for all p∈Min( RI ), Z ( p )⊆ Z ( I ). So, the left hand side contains the right hand side,

left hand side of the statement 2 contains the right hand side of the statement 2 and for the

other direction. So, now we need to show that  every point in Z( I) is inside Z(p) for some p.
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So, conversely let. So, here again it is an abuse of notation. So, we will write let  m∈Z ( I ),

where  m is  a  maximal  ideal  of  R.  So,  at  this  point  we  do not  distinguish  between  the

collection of maximal ideals of R, and the set of points in k n. So, it is an abuse of notation,

but we will still do it. So, but so this means that it is a maximal ideal, that is m is a maximal

ideal containing I. 

That  is  because  every  polynomial  in  I  vanishes  at  the  point  corresponding  to  m.  And

therefore,  the  evaluation  map  vanishes  means  when  you  evaluate  it  you  get  0,  but  the

maximal ideal is the kernel of that evaluation map. 

So, therefore I must be in the kernel which is m, maximal ideal containing I which, now

implies that this is a prime ideal containing I so therefore, there exists p∈Min( RI ) such that,

p⊆m that is just, the I mean this is the maximal ideal, this is a; this is min, so by definition

there is 1.
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And, which now implies that, which is all that we wanted to prove,p⊆m means that m∈Z ( p )

, which is what we wanted to prove. every point inside Z( I) is in Z(p) for some p, so we

prove that. And 3,So, assume Z( I) irreducible, which means that. So, this is an we proved in

2 that this is an irredundant, we need every prime in every element of Min( RI ) and we do not

need anything further. 

So, Z(I) is irreducible means that there will be exactly one such one element in this union, ok.

So, it is irreducible would mean by 2 that,  #Min( RI )=1 by 2. And so, this minimal primes

over I is the thing and which now implies that radical of I is a prime ideal. Because radical of

I is the intersection of the primes in this collection, but there is only one so, it is prime, so that

is the end of this proof. So, now yeah that is the end of this the proof.

So, now we would like sort of al maybe we would like to do to ourselves, but we would like

that with the help of a computer we would like to given an ideal in a Noetherian ring, find its

associated  primes  or  the  primary  components  or  some  partial  information  about  in  that

direction. So, let us say we would like to understand how we can solve that problem.
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So, let us let me just briefly write these things so, that,. So, one approach which we did last

time was, given an ideal we will try to say let us try to find associated primes that do not

contain another way or that way we can will try to enumerate all of them. So, given I inside R

Noetherian, otherwise lot of these do not apply. 

We would  like to determine Ass( RI ) , possibly by looking  looking for p∈Ass ( RI ) a thing

such that,  p does not contain a for some suitable a. So, p does not contain for some.
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So, what is suitable, what is what should we use all this will depend on the problem. I am not

suggesting some programming strategy I am just trying to give a strategy on how to solve for

some problems essentially by hand, but with the help of a computer. That is suitable a and

maybe not just a single a, but many of them. So, the so what is the I mean how did we know

this thing. So, p∈Ass (M ), and a∉ p. 

This we saw last time if and only if p Ra∈ Ass (M a ) .  this is one; this is one strategy, but the

one of the problems with this is, it is not easy to describe to I mean localizing is not very

easy. One element you can manage, but it still involves keeping track of this map. So, this is a

problem involves keeping track of the map  R→Ra, and then if we want to find so this is.
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And, contracting primary components  of  ( RI )
a
 to  R. This is  if  you want  to find primary

components. So, this is even otherwise, we can let us say we can find, but what is p, which

gives pRa so, these things require some calculation; so, we will we would like to avoid doing

this by trying to sit inside R itself, and working so that is what we would want, we want to do

now. So, we introduce this idea of saturation.
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So, proposition R Noetherian,  I ideal . Let us say p∈Ass ( RI ). And  a∉ p so we are taking;

so we are trying  to  find  or  in  other  words  we are trying  to  find  some property  of  such

associated primes. Then, p∈Ass (
R

(I :an ) ) for every integer n it is the way I go. 

And, we will see that this is a way to identify primes that are not in that do not associated

primes that do not contain a we are not there yet, but and this is in R, because this is an

element of R this is a submodel of R the product has to be inside R . 

So, I might forget to write the, we are only discussing ideals and rings so, the colon is always

inside R unless I have to if it is different I will state it explicitly. So, proof is again one of

these standard arguments using that one becomes familiar with after seeing this a few times.
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So, consider the map from R→
R
I

, linear map not subjective map not the quotient ring map,

but R linear map which sends 1→an. So, some n ≥1 a as above,, consider this map. Now, it

is kernel take this map, it is kernel is everything so, what is a map r→r an.   

So, it is kernel is the set of elements r in R such that, so this is remember this is R linear not

algebra map not map of rings, but an of R modules  {r ∈ R : ran∈ I }= I :an.  So, the kernel

comes like this so, hence we get an injective map, R linear map 
R

(I :an )
→ R
I , right.
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So, it now means that, and the quotient sorry the quotient is maybe one should write as a

short exact sequence. So, let us go back here, so this is the kernel of this map the quotient is

the co-kernel of this map, which is just 
R

(I :an )
, sorry. Let me just write it in is a short exact

sequence 0→
R

(I :an )
→ R
I
→ R

( I+an)
→0. 

So,  this  is  what  the  map  is.  Now,  let  us  look  at  so,  this  says  that

Ass( RI )=Ass(
R

( I :an) )∪Ass (
R

( I+an) )

 therefore, p is an associated prime of R, and p does not contain a. So, where can p belong ? p

can only belong here, because if p belongs here then p would contain I and  an so, it will

contain a.
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So, let us just since a∉ p  , p∈Ass (
R

(I :an ) ) So, this is true for every n so, we would. So, now

definition again R Noetherian and I and J ideals. So, because R is Noetherian we can look at

the following  I : J ⊆ I :J 2⊆ ...⊆ I :J n⊆ .. . . This is all colons are inside .

So, what is this? This is all the elements of the ring which multiply J into I. Anything that

multiplies J into I will also multiply J2, because J2 is inside J, so we get this. And anything

that  multiplies  J2 will  also multiply  any higher  power  so,  in  particular,  so we have this

ascending chain of ideal, and these are ideals of R. So, we have an ascending chain of ideals

in R, so it must stabilize. 
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So, therefore there exists n such that sorry  I : J n=I : J n+1=.. .. So, there is a stable value so

this stable value is called the saturation of I by J.
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And is denoted; and is denoted by  I : J∞, this is what happens when you take increasingly

higher powers of J, and it infinity. And it stabilizes after a while. So, we would prove some

properties  about  associated  primes  of  saturations,  but  before  that  let  us  just  make  some

observation that is required that will be useful improves, or when trying to solve problems.



So, write  J=(a1 , . . . , an ) .Then,  I : J∞=. ∩
i=1

n

I :ai
n . So, this is a notation just when you take

principal element, we will omit the parentheses. 

So, let us prove this sorry we should write proposition. So, this is convenient, because if you

have to saturate an ideal altogether we can do it with one generate at a time. So, let us prove

this.
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So,  proof  so  recall  from our  earlier  discussion  that  the  discussion  above  this.  This  was

actually  equal to I:  J to some fixed power,  some J large enough power.  So, let  N be an

integer, such that I : I : J∞=I :J N⊆ I : ai
N⊆ I :ai

∞ ,  is anything that multiplies the Jth power of

N will also multiply the Jth power of a i because  a i
N  is inside J .

And this is; and this is inside I : a i
∞ .So, the stable value of this family is this saturation. So,

this we have this, so this is true for every I. So, this proves one inclusion.
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So, the other; for the other inclusion conversely we will take b∈ . ∩
i=1

n

I :ai
∞. So, each one of

this is , so for each i there exists some misuch that  I : ai
∞
=I :ai

mi

   and so, this is the stable value so we get this equality.
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So, now let us consider and we can just take one single m so, let m = max{m i :1≤i≤n }. So,

let us just take one single m so, now consider Jnm , n  is the number of generators   a1, . . . ,an

and m is this exponent that you needed to go to saturate each one of those. 

So,  what  is  this?  This  is  generated  by;  this  is  generated  by   {a1
e1 , a2

e 2 , . . . , an
en :∑ e i=nm }

where the exponents add up to nm therefore, at least one exponent must be at least m. So, this

now implies that b J nm⊆ I  , which now implies that b∈J : I∞

. So, this is the other direction.

So, we will stop here and we will continue our studying about saturation, and how it is related

to primary, what information it would give for primary decomposition in the next lecture.


