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Prime Avoidence

So, we discuss a few more properties about associated Primes in this lecture.
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So, here is a proposition. Let R be Noetherian and M finitely generated, then the set of zero

divisors on M is the union of the associated primes of M. What are we saying? So, what is the

zero divisor? 



(Refer Slide Time: 01:21)

So, r∈R is a zero divisor. So, this is zero divisor on M, if there exists an x ≠0∈M   such that

rx=0. So, what we want to show is that? Every such r belongs to to some associated prime

and conversely every element of an associated prime is a zero divisor. 

So, proof of proposition. So, let  p∈ Ass M ,  this implies that there exists  x∈M  such that

AnnR (x )=p. And, if annihilator of element is a proper ideal, then it must be a non zero x.

(Refer Slide Time: 02:27)



So, this implies that every element of p is a zero divisor. Therefore, ¿ p∈ AssM p is consist of

zero divisors and nothing else.

So, now conversely let  r∈R be a zero divisor. Let  x ≠0∈M  be such that  rx=0. So, now,

consider the set AnnR(x).
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So elements maximal among annihilators of arbitrary y; y ∈M  are associated to M.

Let  Λ={AnnR ( y )|y ≠0 , AnnR ( y )⊇ AnnR(x )}.  This  is  non empty  because  annihilator  of  x

itself is inside here. Also R is an Noetherian. So, Λ has a maximal element.
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Which means that AnnR (x )⊆ p for some associated prime p.

So, now, actually we can make this a little bit stronger. So, what did this argument say using

the Noetherian condition? That annihilator of an element is inside some associated prime. We

can actually prove a slightly stronger statement, which is that if I is an ideal that consists of

zero divisors. Then I is in some associated prime. It will have to use this proposition and one

more proposition called prime avoidance lemma. 

 So, here is a statement about arbitrary rings. Let  p1 , p2 ,…, pn be prime ideals. Let I be an

ideal such that  I=∪i p i. So, the union itself is not an ideal or may not be an ideal so I is

inside. Then, I ⊆ pi for some i and this is not the most general version of this lemma one can

relax these conditions. So, I put them as I will put them as exercises, but this is the version

that we would need to use. 

So,  why  is  it  called  prime  avoidance?  It  says  that  prime  avoidance  is  usually  the

contrapositive statement which is that, if I avoids each of the pi. I  is not a subset of each of

the pi then I  is not a subset of the union. So, that that is some ways sometimes that is how its

used. So, this is why its called prime avoidance lemma.
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 So, proof. So, I  is contain the union of n primes and we want to show that I  is none of them.

So, we can assume that so, we will proceed by induction on n. If  n=1 there is nothing to

prove. So, what do we I think? So, we assume by induction that I is not contained in a union

of fewer than n elements in p1 ,…, pn.

Because, if that were the case then by induction we would know this. So we can assume that

its not a container. So what happens when n=2. So, what is hypothesis? The hypothesis is

that I ⊆ p1∪ p2 and we want to show that I ⊆ p1 or I ⊆ p2.

So, since I is not contained in the union of n-1 things here, before we start we can even set up

that notation. Pick x i∈ I−∪ j ≠ i p j. Since I is not contained in the union we can pick such x i.
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What  does it  mean when  n=2? So  x1∈ I {p¿1 and  x2∈ {p¿2.  I ⊆ p1∪ p2.  So,  what about

x1+ x2? 

What does this say now? Now x1+ x2∈ p1∪ p2 so x1∈ p1 and x2∈ p2.

Suppose  x1+ x2∈ p1. So, putting these two conditions we would get that  x2∈ p1 which is a

contradiction. Therefore x1+ x2∉ p1.

Similarly  x1+ x2∉ p2.  So what  is  the conclusion? The conclusion is  that  if  I⊈ p1 , p2 then

I⊈ p1∪ p2. So this is a conclusion. And one observation that we would like to make at this

point is that which is not relevant for this proof but it is relevant for an exercise is that we did

not use the fact that pi is prime. 

So, the first two ideals in that list p1 , p2 need not be prime ideals. So, that is the observation

that we take from this which is relevant for the one of the exercises.
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So, now, assume n≥3. So we have picked elements x1 ,…, xn satisfying this. And consider the

element x1+ x2 x3…xn. So this element is inside p1∪ p2∪…∪ pn that is hypothesis this is an

element of I.

Now x i∈ p i for all  i. So we can assume by induction that  x1+ x2 x3…xn∉ p2∪…∪ pn. Else

x1∈ p2∪…∪xn which is not true.

Then x1+ x2 x3…xn∈ p1but x1∈ p1 so x2 x3…xn∈ p1 and p1is prime. Note that x i∉ p1 for all

i≠1. So, this is a contradiction. So, that is the proof of this prime avoidance lemma. 
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And using these things we can get  the following corollary,  R Noetherian,  M ois finitely

generated, I an ideal of zero divisors. Not necessarily killing the same x inside M. It does not

mean I  is  a subset  of the annihilator  of some element  it  could be annihilator  of various

element.  Then ∃ x ≠0∈M st Ix=0.

It just says that for every element  r∈ I , there is an x such that  rx=0 that is all that we are

assuming here. But, we are saying we are switching the order of the quantifiers here. So, the

proof is just using prime algorithms.

Notice  that  I ⊆∪p∈ AssM p this  is  a  finite  set.  So,  this  now implies  that  I ⊆ p for  some p

associated  to  M.  But,  p  itself  is  annihilator  of  some element  so,  I  annihilates  the  same

element. So, that is the end of this proper statement.
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So, another useful proposition in this topic is the following. Let us say R is Noetherian M

finitely  generated.  Then,  there  exists  a  filtration  0=M0⊊M1⊊M2⊊…⊊M r=M  such  that

M i

M i−1

≅
R
pi

 for some i.

So, this is not going to go very far it going to stabilize somewhere, but we can actually do this

we can get such a filtrations. So, a successive stage is the quotients are 
R
pi

.
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Proof, So, what is the first module? The first module is just 
M 1

M 0

, which is just M 1 and we are

saying that that should look like 
R
p1

. So, in other words we are saying that there is a there is a

cyclic module, quotient by a prime ideal that sits inside M and we know one place to look for

such a thing which is an associated prime. 

So, let  p1 be an associated prime. Then  
R
p1

 injects into M call its image  M 1. Now, we go

modulo M 1 and construct an M 2. Now, do the same in 
M
M 1

 and get an M 2 such that; I mean

we will  get some module here with the same argument.  Look at  its pre image such that

M 1⊊M 2⊊M .
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And we can repeat  this  to  get  a sequence.  This must stabilize,  but the only place it  can

stabilize is at  M; because, if  it  stabilizes elsewhere just  go modulo that and do the same

argument. So, do this and this stabilizes exactly at M, it cannot stabilize strictly inside M;

because, then you go modulo that stable value and then repeat the argument and then you

would have constructed one so, this is.

And often such as because, this gives us sort of a inductive handle to answer many questions

about modules by just looking at quotients by prime ideals and we know that I mean in some



sense this might be easier to handle than arbitrary modules. So, this is an some proposition

that will get used sometime later. So, I conclude this lecture with one example.
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This  the  other  one  we  already  worked  out.   R=k [ x , y ],  I=(x2 , xy).  We  would  like  to

determine its minimal and embedded components. 

So, then we know that √ I=(x). So, Min( RI )={( x )}. And then we also saw that this ideal is

associated to 
R
I

, we know the irreducible and primary decomposition. but how do we get the

uniqueness? So, we just found one how do we know that is unique? So, how do we do that

argument?
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So, to find the primary component for  (x) we look at  I R(x ). But localizing many elements

outside x is not a very computationally convenient thing. So, one we could do is we could

just first invert y and then worry about inverting other things. But, if you just invert y, so y is

outside (x). So, in the process of inverting every element outside (x), one step would be to

invert y. 

So, now what is this? So, the ideal contains x2 and xy. In the ring R y, y is a unit. So, you do

not need to put this unit. So, xy and x will generate the same ideal after y is inverted. And

once x is there so, maybe you can write this ( x2 , xy ). So, I said this is unnecessary now, in this

ring its not going to change the ideal. So, this is the same as. What I meant is? This is a unit

now in that ring. 

So, this is the same as ( x2 , x ) R y and of course if x is there then you do not need x2; so this is

( x )R y. So, therefore, I R y∩R=(x ). So, that is why the minimal component corresponding to

this. So, one can determine minimal components like this. This is a way to find that. 

We will do one more example which is a little bit more complicated.
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So, R is the ring in four variables R=k [u , v , x , y ] and I=(ux , vy ,uy+vx). So, there are two

sets of variable and then we are taking all four products, but except in the third term we are

taking the sum I mean we are taking two products separately and then taking the sum. So, this

is then we would like to know what this is. So, first we would like to understand the support

of 
R
I

.

So p⊇ I  implies  u∈ p or  x∈ p and v∈ p or  y ∈ p. So, first of all there are now (u, v ) is a

possibility. So, you can just explicitly check enumerate them (u, v ) this term is there this term

is there and this term is there. Similarly, (x , y ) are both in support 
R
I

. So, this is there.
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Now, we can suppose u∉ p, p is some primeideal. If u is not there then x must be there and if

x is there then this term is there. So, this implies that x∈ p if x∈ p then vx∈ p this implies

that uy∈ p. 

So, what is what I am saying here?  x∈ p means that the second term here  vx∈ p which

means that the first term is also inside p, but u is not there. So,  y ∈ p. So, in other words

( x , y )⊆ p. Similarly do for v∉ p, x∉ p, y ∉ p.
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So, the conclusion of all of this argument is that the minimal primes Min( RI )={(u, v ) , (x , y )}.

Now, we can ask what are the other associated primes and if there are what are they. So, let

us  first  evaluate  the  primary components  corresponding to  these  primes.  So,  what  is  the

primary component? So, we do not need to know the entire associated prime to determine the

primary  components  for  minimal  primes;  that  is  one advantage  of that  theorem. Primary

component of I for (u, v ).

Well we just localize it. So, this is I R(u, v)∩R, but again localizing it this is not that easy to I

mean its not easy to describe that ring, but we could just start by inverting x and y first. So,

then so this is the same as. So, so this is inverting everything outside (u, v ).

So, when we invert just x and y we already get u and v, if we invert x then as we argued in

the previous example this becomes a unit  and then we just  need to put an u, similarly y

becomes a unit. So, we just need to put in v and once u and v are there all the terms are there.

So, then we can just conclude that this is (u, v ). And similarly I R(x , y )∩R=(x , y ). So, these

two are two primary components.

(Refer Slide Time: 31:51)

Now, we check if  I=(u ,v )∩(x , y ).  So,  the  answer is  no because  the  right  hand side  is

(ux , vy ,uy , vx) , there are four terms here while in I it was just the sum. So, that is a smaller



ideal. So, this is the right hand side is no which means that there are other associated primes

and we need to find them ok. 

So, what are the other associated primes? So, let q be an embedded prime meaning a prime

that is not minimum. We could just say let q be any prime let q be an associated prime such

that q does not contain u. So, we are going to do this. So, which means that q Ru∈ Ass
Ru
I Ru

.

But what is 
Ru
I Ru

? So, we will just invert u here and if you invert u we would get x and if you

invert x, then it just becomes v and y and so, if you invert u then u gets killed. And then if

you invert y v will get killed and sorry if you sorry in R mod I if you if you invert u then x

gets killed. 
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And  then  so,  let  us  write  this  out.  So,  Ru=k [u , v , x , y ,u
−1

].  I Ru=(ux , vy ,uy+vx),

Ru
I Ru

=
k [u, v , x , y , u−1 ]

( x , y+u−1 vx , vy )
. So, we just needs x and use a unit. So, we can remove this uy+vx we

can rewrite this as y+u−1 vx. 



So, what have I done? The first element you do not need the u because, its the units the

remaining things is needed only needed in the ideal in this form we use a unit. So, I can

multiply both sides by u inverse and get what rewrite this as y+u−1 vx. 

Now, in this ideal we have x here and if x is there, then one does not need this second term

here because, this is just a multiple of x. So, one just needs y and if one has x and y one does

not need this I mean one has y one does not need this term. So, in other words, but this is a

domain this has only one associated prime.

(Refer Slide Time: 36:13)

So, this is a domain this is just killing x and y here. So, its just  
k [u, v , x , y ,u−1]

(x , y )
 that is a

domain has only one associated prime which is this. So, in other words so, this implies that if

q is an associated prime of 
R
I

 such that u∉ q, then q=(x , y) that is what this conclusions this

argument says. So, we can do this for the remaining other variables also.
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Do this for the other variables do this for the other variables. Now what? So, the conclusion

would be that first of all there is an associated prime which is not minimal. And it has to

contain  if  it  does  not  contain  u its  a  minimal  prime  similarly  for  v  and x and y.  So,  a

conclusion is that AssM ¿M={(u ,v , x , y ) }.

So, let me just repeat what I how we got this? If you have an associated prime that does not

contain u, then it must be this if you as the same argument to say if here associated with does

not contain v it must be this. Similarly, if you omit x and y we will get u and v. If we if you

localize x and localize y you will get u and v. 

However,  we know that  there is  an  associative  prime which  is  not  minimal  because  the

minimal components do not give I, its something bigger than I. Therefore, there is only one

solution to this problem now that associated prime there is an associated prime which as all

the variables and this is a maximal ideal.

 So, therefore, associated primes is minimal primes over I plus this maximal ideal. And now

how do we write a primary decomposition?
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Well  because  this  is  a  maximal  ideal  we  have  we  are  lucky,  any  ideal  J  such  that

√ J=(u, v , x , y) is (u, v , x , y ) primary. So, now, what do we do? Well we play a little trick

which is that, let J=I +(u , v , x , y )
k where k is very large. So J is (u, v , x , y ) primary. 
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And then check that; I is indeed the components for the minimal primes which we already

worked out and J and its independent of that exponent k, for whenever its very sufficiently

large.



So, this is one example which sort of goes back and forth between various ideas that we

learned and then let us compute. There the finally, there is a trick, but apart from this trick

here everything else some in one way or the other we have seen in earlier lectures. 

So, this is the end of this lecture.


