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Lecture – 24
Associated primes

This is lecture-24. In this, so we start  with this simple proposition which we had sort of

discussed earlier, I just want to clarify it, so we discuss that in a minute.

(Refer Slide Time: 00:29)

So, R noetherian; N ⊆M finitely generated R modules. If N is p-primary, then √ Ann MN =p,

this we saw earlier. Now it is not true that any ideal with a radical p. So, what does it say for

ideals? 



(Refer Slide Time: 01:25)

For ideals, it says that if I is a P-primary ideal, so it means that p-primary sub module of R

then √ AnnR( RI )=p, this is what it says. But what is the annihilator of 
R
I

, so this is just I. So,

in other words that is √ I=p this is what we have.

(Refer Slide Time: 02:27)

However, in general there are ideals, I mean in noetherian itself I such that √ I= p∈ Spec R

but I is not p-primary. Let us look at an example. 



(Refer Slide Time: 03:09)

Let R be the polynomial ring in two variables over a field k. Now, let I=(X 2 , XY ), what is

the radical of I? Well, X must belong to the √ I , because X 2∈ I  but if X is in √ I  then XY is

automatically there. So, this implies that √ I=(X ). And 
R

(X )
≅k [Y ] which is a domain.

(Refer Slide Time: 04:19)

So, therefore, √ I  is a prime ideal. However, I is not (X )-primary and why is that? So, what is

the annihilator of  X ∈
R
I

? This is the ideal (X ,Y ).



(Refer Slide Time: 05:33)

Since  x2= y x=0 and  (x , y ) is a maximal ideal of R. So, annihilator contains this maximal

ideal, but it does not contain 1; so it must be equal to the maximal ideal.

So, therefore ( x , y )∈ Ass
R
I

. And of course, the minimal prime ( x )∈ Ass
R
I

, so there of two

distinct primes, so therefore I is not (x) primary. So, in general there are radical ideals which

I mean, there are ideals whose radical is a prime ideal, but the ideal itself is not primary. 
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And in fact  ( x2 , xy )=( x )∩(x2 , y ). So, here it says it must be so one can check that this is

equal, this is clearly the right side contains the left side and right side contains the left side.

On the other hand, if you have something on the right side it must be divisible by x and it

should be divisible it is written as a linear combination of x2and y . And then you can remove

the x terms outside and show that there must be an xy term, so this is equal. And both of this

is  prime,  so  primary  and  also  irreducible  I  mean  all  of  that  thing  that  we  want  this  is

irreducible, this is exercise.

So, here is a decomposition into to an irreducible decomposition with two distinct associated

primes.  The  associated  prime  of  this  is  (x) associated  prime  of  this  is  (x , y ) distinct

associated primes, so this is a irreducible decomposition of (x2 , xy). 
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However, we have the following proposition R noetherian, m maximal ideal not necessarily

unique maximal ideal; I an R ideal such that √ I=m, then I is m primary. So, quite often at

least  in  the  context  of  noetherian  rings  and  a  maximal  ideal,  quite  often  people  will

interchange  these  two terminology;  just  say  that  I  be  an  m primary  ideal.  So,  these  are

equivalent notions for ideals whose radical is a maximal ideal. 
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So, proof consider the support  Supp(
R
I
). So, this must be inside the radical, so these are

primes  that  would  contain  the  radical,  so  this  is  just  m.  Therefore

Supp( RI )⊇ Ass( RI )⊇Min( RI )={m} so  remember  we  have  this  inclusion,  this  only  a

singleton element here which means its own minimal. So, this is also equal to m, because this

is singleton so that is the unique minimal element and all of these are equal. 
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And that  says that  I  is  m primary.  So, these are some general  remarks about  m primary

ideals. So, now we would like to understand, so let us step back and look for a minute what

have we proved.

(Refer Slide Time: 11:19)

So, context is R is noetherian, M finitely generated and N ⊆M . We introduced the notion of

an associated prime, what does it mean to say it is an associated prime? Prime is associated to

M, prime is associated to 
M
N

 etc. We also introduce a notion of primary sub modules, what

does it mean to say 
M
N

 is primary, and what does it mean to say it is p-primary, and we also

got a primary decomposition.

Let  me  just  summarize  we  know what  notion  of  associated  prime  says,  we  know what

primary sub modules are I mean at least we are we I should not say we know, but we actually

have seen them, and also we know that there is a primary decomposition. So, this just means

that  there  is  a  decomposition  in  which  each  factor  is  primary.  So,  they  have  a  unique

associated prime, but what about the associated primes of 
M
N

 for R if it is not primary.
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So, here is the proposition; R noetherian, M finitely generated, N ⊆M . Let N=¿ i=1¿mM i

be an irredundant primary decomposition, so each of these are primary. So, in other words

√ Ann
M
M i

 is a prime ideal and  M i
 is primary for this prime and this is different from the

corresponding prime for a different ideal ∀ i≠ j.

This we saw given a irreducible decomposition we can combine the irreducible sub primary,

so we can combine the reducible factors corresponding to the same associated prime and

rewrite  them  and  such  a  thing  would  be  an  irredundant  primary  decomposition  that  is

irredundant means this, redundant primary decomposition.

So, then  Ass
M
N

={Ass MM i
|1≤i≤m}. So, each of these factors here  

M
M i

 have contribute one

associated prime and distinct ones and that is exactly the list of associated primes of 
M
N

, so

this is proposition. So, every associated prime of 
M
N

 gets a contribution from this and so this

is the proposition. 
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So, so we go back to a sort of argument that we used once used earlier. So, we have an

injective map from 
M
N
→¿ i M

M i
, so we have R linear injective map. The reason is there is a

map from M to each one of these factors which gives a map from M to the direct sum and the

kernel is ∩iM i which is N, so this becomes injective.

So, this now means that associated prime of 
M
N

 is inside the associated primes of the direct

sum, but these are themselves primary. So, this is just exactly the annihilator of 
M
M i

. And this

is a direct sum of modules therefore, the associated prime just one can take the union; so from

each factor in the union one gets exactly one count. 

So, the associated primes of 
M
N

 is a subset of the associated primes on this side, so this is just

slightly easier direction.
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Now, conversely let W j=∩i ≠ j
M i

N
⊆
M
N

. Now, each M i⊆M  and they contain N, so 
M i

N
⊆
M
N

and  the  intersection  is  also  therefore  inside
M
N

.  And  because  this  decomposition  is

irredundant, we cannot really remove any of them if you remove any one of them we will not

get N.

So, this is really not 0; this is a non-zero module. And now from 
M
N
→¿k M

M k
. So, if you take

this map and look at where this lands, so let us take a look at this thing at elements here

belong to 
M i

N
 different from j. So, in this factor k different from j, it gets killed; so image of

W j inside 
M
M k

  is 0 unless k equals j, this is also injective.
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So, image of 
∩i≠ jM i

N
 in 

M
M k

 is 0 if k is different from j, so that is the observation that we have

to make. And this is the intersection this is W j, hence W j to this map has to be injective on to

the jth factor here, it has to be injective therefore W j injects into 
M
M j

.

In other words, AssW j={√Ann
M
M j

}. So, this is again a primary ideal and its radical of the

annihilator is some prime ideal therefore it is primary to that prime ideal. But what does that

say, so it says that AssW j is the associated prime of the jth factor here, but W j also sits inside

M
N

. 
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We conclude that √ Ann
M
M j

∈ Ass
M
N

. So, this is the another proof, so this proposition tells us

that not only do we have primary decomposition I mean, decomposition into primary sub

module as an intersection of primary sub modules. One also gets that the associated primes

corresponding to the primary sub modules that is exactly the list of associated primes of  
M
N

.

And in the redundant case, they occur exactly once if there are m terms here; N has m distinct

associated primes. So, now we would like to discuss little bit more about. So, this is one

property of the primary decomposition that we have, we would like to discuss one another

uniqueness property, so which is proposition. 
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So,  now we will  restrict  ourselves  to rings  and ideals  and not  work in  the generality  of

modules. It is a little easier to visualize this picture than the one for modules although the

proof is essentially the same, but we will restrict ourselves too. So, R noetherian I is an ideal,

then with irredundant primary decomposition I=∩iJ i.

So, all the J i’s are strictly bigger than I; they 
R
J i

 have distinct associated primes, their primary

and distinct associate primes and we saw in the previous proposition that associated primes of

I is the union of the associated primes of the sets of associated primes of these individual

components. Let pi=√J i and this is what we have, so this is 1≤i≤m.
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Let  { p1 , p2 ,…, pr }=Min
R
I

.  So,  we  have  observed  earlier  that  the  minimal  primes  are

associated,  so it  will  show up in the primary decomposition.  So, like this  exactly  be the

minimal prime ideals of 
R
I

. 

Then ∀1≤i≤r, J i=I R pi∩R. So this is what this proposition says.

So, if you have a primary decomposition, so first of all there is an analogous statement for

modules which you omit, because it is this the statement is a little bit more clear. If you here

is an ideal and it has an intersection so we write as an intersectional irredundant primary

decomposition, now you just look at the components corresponding to the minimal primes

they are uniquely  determined that  is  what  this.  It  is  extend this  ideal  to  localization  and

contract back, this is what we have proof.
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So, let us extend I to R p. Now, this is the same so what is it let us fix some i in this range,

where it is corresponds to a minimal prime and write p for  pi. So, we want to show that

J i=IRp∩R that is what we want to show. So, now one can check the following.

For  j≠ i,  J iR p=Rp why is that so remember p is a minimal prime, and J i for this property

means that its radical will contain an element which is not inside p. Therefore, it will contain

an element which is not inside p, because powers complement of p is multiplicatively closed. 

And therefore, when invert the complement of p something inside J i would get inverted and

it will become the whole ring. So, using this one can check that J iR p is exactly I R p, so that

now when we contract it back we might get a bigger ideal.
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So, let  J '=I Rp∩R=J iR p∩R. Now, because of this, this could be bigger than J i. But what

kills thisJ '; so notice that we have 0→
J '

J i
→ R
J i
→ R

J '
→0 we have this; now localize this at p.

So, first of all what do we know what are the associated primes of this, associated primes of

this is just  p. So, here associated primes is just  p which means that we get that associated

primes is also just p. So, we want to prove that J=J i=J
', all of this argument is necessary if

it is not equal.

If J i is not equal to J ', then do this; so then this is a non-zero module and it has an associated

prime and we localized at p. So this now implies that ( J
'

J )
p

≠0 because associated primes are

inside the support, so this localize is non-zero.
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But on the other hand we get J from the exact sequence we get 0→( J
'

J i )p→
R p
J iR p

→
R p
J 'R p

→0

; but these two ideals are equal, they may be different than R; but once you invert element

outside P, they become equal which means that the subjective map is actually also injective. 

So,  this  is  also  injective  which  is  a  contradiction  since  ( J
'

J i )p≠0,  so  that  proves  that  the

minimal components are uniquely determined. The primary component corresponding to the

minimal primes are uniquely determined, just one definition which we should.
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We say that p in associated prime, we (Refer Time: 31:46) elements of associated primes of

M, which are not in the minimal primes of M are called embedded associated primes. So, in

the example that we had seen earlier, in the ideal ( x2 , xy )=( x )∩(x2 , y ). This is  minimal of 
R
I

,

this is the previous example is just this prime while associated primes are. 
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The (Refer Time: 33:01) prime ideal (x) and the prime ideal (x , y ); and this is an embedded

prime. So, we will end this lecture now. And in the next lecture, we will look at few more

properties and some examples.


