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Lecture – 22
Primary Decomposition

This is lecture 22, in this lecture we continue our discussion about associated primes and I

mean eventually or this is going to be used to clarify the idea of an irreducible decomposition

and in fact, to refine it and thereafter we will forget about irreducible decompositions and we

will know only what we will learn.
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So, as a proposition about associated primes, proposition. Let  0→M 1→M 2→M3→0 be an

exact sequence. Then AssM 1⊆ Ass M2⊆ AssM 1∪Ass M3.

So, the associated prime of the left one of any module is a subset of the associated primes of a

larger module and the associated primes of this middle module is a subset of the union of the

associated  primes of the sub module  and the corresponding quotient;  so this  is  what  the

proposition says.
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Proof. Let P∈ AssM1, then there exist an R linear map 
R
P
→M1. This is we mentioned earlier

in the previous lecture, although we said associated prime means an annihilator of an prime

ideal that is annihilator of an element; very often we just think of it in terms of this such a

injective map. Compose with the injective map M 1→M 2 to see that; so all both these are R

linear to get that p is associated to M 2.

Hence  AssM 1⊆ Ass M2; so, this is the first inclusion here. For the other, let us look at the

other one we were to work a little bit with element wise. 
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Let P∈ AssM 2. So, therefore, there exist some x∈M 2 such that its annihilator is P. Now, we

consider the sub module  Rx, so  Rx∩M 1 is a sub module;  Rx is a sub module of  M 2, it is

called a cyclic sub module because it has just one generator like the cyclic group; so it is

called a cyclic sub module and that intersect M 1. So, this is a sub module of M 1. 

So, let y ∈Rx∩M 1, write y=rx and r has to be outside p because p kills x. Take y non zero,

so r∉P. So, now we would like to understand what the annihilator of this y is. 
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Let a∈R be such that ay=0; so we are looking for the annihilator of y. So, this now implies

that arx=0, this is happening inside M, this implies that ar ∈P because that is the annihilator

of x, but r∉P; therefore, a∈P.

So, sorry I should have been not careful; assume this is non zero. It is not necessary that two

sub modules of  M 2, namely  Rx and  M 1 need intersect at anything, the intersection need to

contain a nonzero element. So, first assume non zero; take a non zero element then we go this

calculation and then we are done; we conclude that a∈P.

So, in other words; so what is this calculation say? This says that AnnR ( y )=P and that just

implies now that P∈ AssM1. So, let us just go over this proof; what does this half the proof

say? It says that if p is associated to  M 2and x is an element whose annihilator is P. If this

intersection is nonzero, then P is also associated to M 1 that is what this argument says.
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So, now assume that Rx∩M 1=0. So, we have a surjective map from M 2→M 3 whose kernel

is  M 1;  inside here is an sub module  Rx. Now, this composite map gives a map here; not

necessarily surjective, but a map. What is this map?

I mean; what is the nature of this map? Well, this is R linear, this is R linear; so we get an R

linear map; from Rx→M 3 and this is a composite.
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This induces a map which is Rx. So, remember kernel of this map is M 1. So, 
Rx

Rx∩M 1
 injects

into  M 3;  that is we get this map, but this  is 0. So, this  is isomorphic to  Rx itself  that is

because we are going modulo 0 sub module.

So, in other words Rx is a sub module of M 3. So, let me just quickly go over what we just

said; let us assume this. So this the natural surjective map from M 2→M 3; that induces a map

by first composing with this inclusion map from Rx. 

So, we get a map like this, not necessarily surjective; we would like to prove that it is actually

injective, what is the kernel of this map; of this diagonal map here it is precisely this Rx∩M 1

but that is 0. So, therefore, the diagonal map is injective.



(Refer Slide Time: 10:09)

But  this  is  isomorphic  to  
R
P

.  So,  therefore,  
R
P

 injects  into  M 3.  So,  to  prove  that  this  is

isomorphic to 
R
P

; it just follows from the fact that, if you take a map the kernel is P. 

And therefore, 
R
P

 injects into M; with 1 going to x and if we have a injective map, then it is

an isomorphism onto its image, not to the isomorphism to the larger module, but onto its

image, but image is precisely this Rx; so, this is an isomorphism. So, therefore, Rx is the 
R
P

injects into M 3. So P∈ AssM3. 

This is what we wanted to show, P is either associated to M 1; that is if this set is nonzero and

if  this  set  is  0,  then  it  is  associated  to  M 3.  So,  these  are  some elementary  property  for

associated primes. We will study more. We will restrict ourselves to noetherian rings, but we

will proceed in as we go along.

So, next we need to generalize the idea of irreducible ideal. So, remember we started with

irreducible subsets of maximal spectrum or Z ( I ) then we said let us do it for ideals because if

we wanted to do generality with all; I mean in this algebraic set up, one needs to do it for

ideals,  but then it is actually much easier to do for modules and we will do it so in that

context. So, first we need to extend the notion of irreducibility to modules; so definition.
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So, again R is a commutative ring, say M an R module, N sub module of M. Say that N is an

irreducible sub module of M, if ∄N 1 , N 2 such that N ≠N1 and N ≠N2 and N=N 1∩N2.
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The point  is  all  of this  calculation,  union, intersection is  done inside some large module

which is M. The same way we were working over ideals where there was an ambient ring in

which all the calculations were being done.

So, this is we say it is an irreducible; so propositions. Let us assume R noetherian, M finitely

generated, N ⊆M  sub module. Then, there exist irreducible sub modules M 1 , M2 ,…,M n such

that N=M 1∩M2∩…∩M n.

So, this is a proposition; if you have a noetherian ring; a finitely generated module and a sub

module  that  the  sub  module  has  an  decomposition  as  an  intersection  of  irreducible  sub

modules. This is a finitely many; so that is the thing and proof I will skip because it is just the

repeating the argument for what we did for ideals, there is nothing new.

So, just if it is not true; then there will be an N 1 which is strictly bigger than N and then and

so on, it will go on building a chain, but such an infinite ascending chain is not possible

because we are in certain noetherian module. Therefore, it must admit such a decomposition.
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So, proof is skipped. So this is analogous to the ideals case, there is nothing new here.
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So,  now  we  are  going  to  begin  putting  extra  structure  or  understand  more  what  this

irreducible  decomposition  is  able  to  give us.  So,  let  N ⊆M  be R modules,  meaning sub

module not just a subset. Say that N is a primary sub module of M if the set of associated



primes of 
M
N

 is a singleton set. It is a singleton set that is this is exactly one associated prime

of 
M
N

. 
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Let P be a prime ideal of R; say that N is a P primary sub module of M; if Ass(MN )= {P }, let

us just be precise here if it is a singleton P. So, this is just the previous definition, with the

extra  information;  what  is  that  associated  prime.  So,  now they  are  the  new thing  about

irreducible decomposition. 



(Refer Slide Time: 18:35)

Proposition, let R be noetherian; N ⊆M  irreducible, M finitely generated; then N is a primary

sub module of M.

So,  irreducibility  as  such  was  some  minimal  structure;  it  was  just  some  not  equal  to

intersection of two ideals; each of which is bigger. There was not much extra structure to that,

but now we are saying that you know that is not true; in the case of where most people are

interested in which whether ring and modules are all noetherian. Irreducibility does say that

the module is primary and we will try to understand when, what does this exactly mean.

So, what is primary mean what extra structure that have; just one more point goes back to the

definition. This is a statement not about M and N independently, it is a statement about the

quotient. So, just one remark N is a primary sub module of M if and only if 0 is a primary sub

module of 
M
N

. 

And similarly N is a P primary sub module of M if and only if 0 is a primary sub module of

M
N

. The statement is always about M
N

 and not about M and N separately and we will see after

this proposition, we will see what it means to say that for a module 0 is P primary.
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So, let us prove this. So, by way of contradiction; assume that there is  P,Q∈Ass (
M
N

) and

P≠Q; in any case this set is non empty. So, to say this is not primary is to say this is not

primary; N is not primary inside M is to say that it has at least two elements, call them P and

Q.

So, then 
R
P

 injects into 
M
N

 and let say that the map is 1 goes to some x where x∈M  but not

in N only then M.
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And similarly 
R
Q

 injects into 
M
N

 and in which  1 goes to some  y  and y ∈M . So, we have two

such elements x and y with these properties. 

So, let z be also an element of M such that  z∈R x⊆
M
n

. So we would now argue that every

element in the annihilator of z is P. So, suppose a z=0; so we are looking for annihilator. So,

what does that say?
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So, notice the following R x is isomorphic to 
R
P

 because P is annihilator of this and if z inside

here, under this map to some r  where r∈R, but not in P is such that r x=z, such a thing exist

because that is what we chose.

So we will get a map like this, so then a z=0 if and only if; so they we doing this calculation

on this side, but the same thing as doing it over this side,  a r=0∈
R
P

. And that is the same

thing as saying ar ∈P and which is because r∉P, this is the same thing as saying a∈P.
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So, in other words; annihilator of every nonzero element of R x is P. Similarly, the annihilator

of every nonzero element of R y is Q. And these are distinct primes, so this cannot intersect.

So, this now implies that R x∩R y=0 in 
M
N

 because it cannot contain a nonzero element in

which case that I mean there will be a contradiction. 
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What does that say? It says that in M, N=(N+Rx )∩ (N+Ry ); both of these are bigger than N

because we chose x , y to be nonzero elements and that is a contradiction.



And the contradiction came by assuming that associated primes of 
M
N

 contains at least two

elements. So, it is non empty and we assume it has at least two elements, then we have a

contradiction; so it contains exactly one; so therefore, N is primary. 
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Let us just summarize these results. Corollary; R noetherian, M finitely generated and then

for all N ⊆M , there exist primary sub modules, finitely many; M 1 ,…,M n such that N=∩M i.

So  this  is  called  primary  decomposition.  We  started  from  the  idea  of  irreducible

decomposition proving; using noetherian hypothesis that every ideal or every sub module has

a irreducible decomposition, prove that they are primary. So, we still have not understood;

explained what primary means, but that we will come to and so one more proposition, just to

refine this a little bit of proposition. 
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Let  M 1 , M2⊆M  be P primary submodules, then  M 1∩M 2 is P primary. So, what does this

mean? So this is one of the usual statements or an exact see or a map that we see we use quite

often in these when we discuss these things. 

So, now we have a map from M→M i; i=1,2.
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So, this gives a map M→
M
M 1

⨁
M
M2

, in this case it is easy to visualize; whatever x here, goes

to x mod  M 1, x mod  M 2. But we did not discuss, direct sum have certain category theory



properties and then it is from there it is automatic that there is such a map. But what is the

kernel? Kernel of this map is M 1∩M 2.
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So,  therefore  we  have  
M

M 1∩M2
 sitting  inside  this  direct  sum.  Which  now  means  that

Ass(
M

M 1∩M 2
)⊆ Ass (

M
M1

⨁
M
M 2

). And for a direct sum associated primes one can just take

unions. 

So, this is related to the proposition that we saw immediately I mean after above the short

exact sequence. But a direct sum like this can be put into a short exact sequence which splits

and so it can be written in this direction and as well as in the opposite direction and from

which we can conclude the statement. So, this is true, but what is this? Both these are primary

to the same P; so this is P.

So, M 1∩M 2 is P primary, this is what we wanted to do. 
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So, now we can strengthen the earlier corollary a little bit; R noetherian, M finitely generated

and N ⊆M  sub module. Then, there exist primary sub modules M i, i=1 ,…, n such that M i is

Pi primary, Pi is different from P j, if i is different from j and N=∩M i.

In other words, in the earlier corollary where we saw this intersection, club all the ones with

the same P together and call that thing M i. So, now we can just get this to be distinct. So, we

will stop here and we will continue discussing this further, in the next lecture.


