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This is lecture 20. And, in the next four-five lectures, we will look at this idea of irreducible

decompositions, primary decompositions, and associated primes. So, this is going to be more

abstract than what we have done so far. But, after we discuss the basics behind these things

we will come back to the computational aspects, but you will have to wait till we understand

this; the reasoning the thinking behind these topics. 
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So, recall that in the last lecture we saw the following that irreducible that spec( R). So, recall

Spec R=. ∪
p∈MinR

V ( p ) .  So,  what  are  these  things,   for  an  R-ideal  I  ,

V ( I )={p∈Spec (R ) : p⊇ I } . And, this disagrees with our earlier notation of points at which

elements of f vanish, but we will see today that these are not very different.

So, and algebraically this is the object that we would want to continue using. And, then we

saw that so this is V( I) and Min(R) is the set of minimal elements of spec R. So, we would

want to understand these things.
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And, so in particular, we know that if we take spec( RI )=. ∪
I ⊆ p ,minimal

V ( p )

, where p contains I and is minimal with respect to that property. And, this is independent of

whether you take I or the √ I . 

So, we get the same thing we get the same right hand side, if we take √ I  instead of I. So, this

is the, this is an important, this is in observation. So, there must be a relation between; so

there must be a relation between the radical of I and the primes containing I.
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And the  relation  is  the  following  proposition.  √ I=. ∩
I⊆ p, p∈ Spec (R)

V ( p )is  the  intersection  of

primes p containing  I where p ∈ spec( R). So, we already observed that radical of I would be

inside. So, let us go over there that part. So, I should say that one could have proved these

this result little earlier also. 

But I felt that, it is the proof is really easy to state once we understand localization and which

is the reason why I postponed it till this stage. One did not need to know localization to prove

the statement.  Notice the following things, primes are radical ideals, prime ideals are radical.
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And, intersection of prime ideals is radical, therefore the right hand side is radical ideal; is a

radical ideal. So, I is in the right hand side , which means that, the radical of I is in the right

hand side, So, this is the so right hand side is the intersection. So, this is the one containment.

So,  again  this  we already  proved;  I  am just  recalling  the  statement  this  can  side  of  the

argument. 

But, it is the other one that is very easy to state once we understand what localization is. So,

to  prove  the  other  direction  let  us  just.  So,  we  need  to  so  we  know  that,  so  we  have

established this. So, let us just kill  I in R, and then we want to prove that the right hand side

is 0 , or let us kill I.
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So, replace R by 
R
I

. So, then we want to show that, we want to show that, the right hand side

now replaced. So, right hand side is inside the nil radical. So, I replace the right hand side by

the appropriate object, primes containing I are precisely the primes of 
R
I

, and the left hand

side becomes a √ (0 ), the nil radical.

So, let us take; so, let a belongs to p, for all p ∈ Spec(R) with  p⊇ (0 ).  Now, let us consider

the ring R localized at a ,Ra={1 ,a ,a2 , . . . }−1 R. So, this is a multiplicatively closed set and

that we are inverting. Now, we know what the primes of a localization are.
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Spec (Ra)={pRa : p∈ spec (R ) , a∉ p}. What it says is p does not intersect this set,  but if p

intersects this set, it would contain some power of a, and hence it will also contain a. So, it

should not do that. So, that is the p does not contain a. So, this is the condition for this. But,

what are the prime ideals that satisfy this condition, because a is in every prime.
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So, p contain 0 , so which now implies that this is the empty set. Now, what sort of rings;

what sort of ring would have a property that spec is empty. 



The only ring with that property is a ring in which 1 is equal to 0. So, the; this implies that 1

=  0  in  Ra.  We have  we had not  ruled  out  such rings.  We had never  said  that  1  is  the

multiplicative identity, 0 is the additive identity, and we had never ruled out that this is these

are this, whenever ruled out the case this could be the same. In fact, the ring is 0, if and only

if this is so maybe let us had there is a remark here this is if and only if Ra=0.

So, only ring with an empty spec is the zero ring, in which the multiplicative and additive

identities are the same. You, one could any ring in which 1 is different from 0, then it would

have a maximal ideal, and maximal ideal is prime. So, spec is non empty. So, now let us I

mean that statement is proven using Zorn’s lemma . So, therefore, 1 is equal, so but when can

1=0in Ra. So, this means that, so let us go back to this statement.
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So, let us, so this is an aside just to think about what this means. So,   1/1 = 0/1 in U−1R. So,

in the equivalence relation (1 ,1) = (0 ,1) if and only if this is by definition. I mean this is this

follows it directly from equivalent to the definition. 

There exist some u∈U  such that, u (1.1 – 1.0) = 0 .And, this is the same thing as saying there

exists a u such that u. 1 = 0. So, in other words,  0∈U  . So, if you invert multiplicatively

closed set the ring becomes 0 if and only if 0 is in the multiplicatively closed set.

So, now, let us go back here. So, this now means that, hence in our question, there exist some

m such that am=0. There are multiplicatively closed set is a elements of this form and 0 is



there means this is the property, and this is exactly a is important. So, this is the proof of this

proposition. So, one could have written this proof without really using localization, but it is

much easier  to visualize the proof once one understands not even full  generalities  of the

localization, just such multiplicatively close sets, and this observation.

So, now so that is just an aside, which we could have done which I wanted to do, I mean this

whole statement was it is not immediately related to irreducible decomposition,  but I just

want this to be people to know this observation. So, now we want to discuss, what is the

relation  between,  so  now we have  back  to  the  problem in  the  geometric  version  of  the

problem.
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Which is that k is algebraically closed;R=k [X1 ,…, Xn ], and I is an ideal, and S=
R
I

. 
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Now, we defined two things called  maxSpec (S )⊆ spec (S ). So, maxSpec(S) is the set of all

primes; this is a set of maximal ideals. 

And, we know what in this particular case what this one looks like; so I, want to change the

notation from last time a little bit what from earlier lectures a little bit. So, this is change of

notation I. So, please keep this in mind in this immediately immediate future lectures.

So,  by  for  an  R  -  ideal  J  ,  V (J )={p∈ Spec (S ) : I ⊆ p }.  And,  by

Z (J )={a∈k n: f (a )=0 for alla∈ J }. So, this is what we had called V(J) earlier when we were

discussing Nullstellensatz, but I want to call it Z (J) and well one justification why it is like

0’s of J. So, we will just call it Z.

So, this is what we, so I want to keep these two sets different. And we will see. So, I want to

keep these two sets different at this stage, and we will keep them different, but we will see at

the end of this discussion, that it is sort of immaterial I mean there are different sets, but

irreducibility of one is same as irreducibility of the other etc. which is what I want to here to

do now.

So, just again; this is the set of primes containing J all of them, and this is the set of points at

which every element of f; every element f of J vanishes sorry this is for av f in J vanishes, .

And therefore, we know what max spec; so, let us just let me just repeat this line here.
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So, this is we know that spec (S )=V ( I ), since S=
R
I

. So, you can think of this as V(I)  inside

spec(S).  And,  this  one  contains  max  spec(S)  the  maximal  spectrum  of  S.  And,  what

Nullstellensatz told us the  the description of points in V(I), this is Z(I) that this is in one to

one correspondence with Z(I).

And,  what  is  the  correspondence?  A  point  a here  goes  to  the  ideal  generated  by

( x1−a1 , . . . , xn−an ), so that is in one direction, that an n tuple,  gives that maximal ideal. And,

every maximal  ideal looks like that,  that was (Refer Time: 17:10) one of the versions of

Nullstellensatz.

So, I just write Nullstellensatz, that  Z ( I )⊆ kn  is precisely in bijective correspondence with

max spec . We had given Zariski topology to this, we can induce Zariski topology on the

subset,  and we can identify give a Zariski  topology on Z(I) using this  .  So, give Zariski

topology here, then induce this is subspace topology and using that is extended to here extend

the topology here.

So, I hope that what we have doing is clear. We have given Zariski topology to spec(S) by

saying V (J) where J is an ideal those have a closed sets, and this is a subset. So, then we can

induce topology on that, the subspace topology, and then this is a sets they are the same. So,

just use this bijection to induce a topology on this set. And, we can talk about irreducible

subset here and irreducible subset there and so that is what we want to explore now.
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So, now so we want to observe one point here which is relevant to this question.  Let p be a

prime in R, where  R=k [X1 ,…, Xn ] and k is algebraically closed. Then,  p=. ∩
mmxml , p⊆m

m. so

this is a property about polynomial rings over fields. One can remove this hypothesis. 

So, the way we will prove this, remove this hypothesis, but the way we will prove this is we

will write this as a corollary of Nullstellensatz. But, one can remove this and still this true,

but poof of where as far more involved, and in fact that thing is that statement is so general

that Nullstellensatz can be derived from it.

So, this is somehow, this statement is closely related to the Nullstellensatz. As it is written

with this hypothesis this can be derived from Nullstellensatz. If you remove this it is still true,

but  that  is  stronger  than  Nullstellensatz,  and  one  can  prove  Nullstellensatz  from  there;

although, that is not the approach that we are going to use. So, but anyway let us just prove

this special case. 
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So, this is what we want to show. So, p⊆ . ∩
mmxml , p⊆m

m. So, this is and this is the proof, proof

of the earlier  observation p is clearly inside that  Note, so now, let us take an element inside

here. So, let f be inside the right hand side. 

So, this is the proof of this inclusion pertaining. What does that say? That says that f (a ), so

what are maximal ideals of this, they are of the form  ( x1−a1 , ... , xn−an ),   so one can, so then

f (a )=0. So, we sorry before I stay there let me just explain. So, let m be a maximal ideal

containing p. 
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 so write  m=( x1−a1, . .. , xn−an), this implies that the point  (a1 , ... , an )∈ Z ( p ),. Because, if you

take p is inside m and if you reduce all of elements of m and if you evaluate an element of p,

it would go to 0 because every element of m itself will go to 0 when you evaluate at this at

this point. So, this is what it means.

So, now so what does this say if we take an f which is in the right hand side, then we have

taken every maximal ideal containing M, so which means we have taken every point inside

V(p). So, f vanishes at every point inside V(p). Therefore, f (a )=0 for all a∈ Z ( p ).

So,  now  let  us  what  does  this  mean.  So,  Nullstellensatz  says  one  of  the  versions  in

Nullstellensatz that we proved says that f ∈√ p, but p is a prime ideal it is its own radical is

what we wanted to prove. So, this proves the other direction. So, it is an important property

of polynomial rings I mean we have seen it only for algebraically closed, that every prime is

an intersection of the maximal ideals containing that prime.
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So, now let us continue with our discussion about irreducible decompositions of spec S. So,

now so again we have now S, R=k [X1 ,…, Xn ], k algebraically closed , S=
R
I

 is some ideal

and we wanted so we have spec S, and  we have Z( I) which is identified with max spec and

is now subspace of this. Now, let us take an irreducible subset of this.
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So, let so we know that in irreducible subset of spec (S) is   V(p), let p∈Min (S ); then, V( p)

is an irreducible subset of spec(S), this we proved in the last lecture. So, now we ask what



about  V(  p)  ∩ Z  (I),  this  is  just  remember  this  is  just  max  spec.  So,  we have  a  larger

topological space spec S, inside that there is a smaller topological space; I mean fewer sets

fewer elements possibly and if we intersect V( p) with the smaller set is it irreducible, so that

is what we would like to understand.
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So,   V ( p )∩Z ( I )=Z (J 1)∪Z (J 2)So, this suppose this is the case, but see we can simplify this

a little bit; V(p) is some subset of this, it intersect Z(I) which is the maximum spectrum of S.

is we can just take Z( p) itself or technically we p∈ spec S, let Q be its contraction in R, that

is also prime ideal and notice that V ( p )∩Z ( I ).

So, here   p is an ideal of S, so Q contains I; so this is same thing as V ( p )∩Z (Q )itself. Any

maximal ideal containing I, and here because of this condition containing p will just contain q

it is , so this will be the statement. So, I am sorry; why did we reduce it like this.
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So, replacing S by  
S
p

, we can assume that S is a domain. And then, the question is so S

remember, S is still; S is still a quotient of R; it is still a quotient not arbitrary S. So, now we

have a polynomial ring in n variables over an algebraically closed field this R and a quotient

ring which is a domain and then so  spec( S) is a irreducible , and we want to ask.
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So, we ask is max spec (S ) irreducible?;  so the answer is yes. If not, there exist ideals J1 and

J2in R such that   Z (J1 )∪ Z ( J2 )=maxspec (S )=Z (Q ). So, what does this say?
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So, then notice  Z (J1 )∪ Z ( J2 )=Z (J 1 J2 ), this is this was one of the, it  is also the Z of the

intersection, and so also Z of the product, this is one that we had proved. We have been using

the word V at that point, but now I want to think of them as 0 sets and call them Z, as we said

we will discuss.

So, this implies that  J1 J 2⊆ √ (Q )=Q , this is again by Nullstellensatz. The only way this is

going to be the whole space is that this ideal is nilpotent or in other words, thinking of it in

terms of R its radical of Q and which is 0 ,   So, we claim that J1 or J2⊆Q.
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If they assume the claim for now and we will prove with claim in a minute, this implies that,

Z (J1 )=maxSpec (S ),  but  then  this  is  a  contradiction  since  we  assumed  that  this  was  a

irreducible decompensate. I mean this way if, so when you say if not there exists ideals such

that this is true; then I although I did not say it explicitly, we implicitly assume that neither of

them is equal to this. 

Otherwise, there is nothing to prove,  the problem is I mean if not,  the assumption if not

assume, we implicitly assumes that these are distinct from Z( Q); although I did not; I did not

write it here, so. So, neither of them is equal to Q, but here we are concluding that one of

them is equal to Z( Q), so therefore this is the contradiction.

Now, to prove the claim; so this is just a general fact, if a product of ideals is inside a prime

ideal, then one of the ideals is in it. Without logs of generality, we may assume that J1⊈Q ;

because if  J1⊆Q, then there is nothing to prove,. So, let  a∈ J1∖Q;  then for all  b∈J 2,

ab∈Q, so  b∈Q which implies that,  J2⊆Q. So, this is just a general fact about product of

ideals inside a prime ideal.

So, let us just go back and review what we just discussed now. So, this is the end of the; this

is the end of the discussion and this is the end of the lecture this lecture. So, let me just go

back and just quickly review what we did. So, we have an algebraically closed field and S is

R
I

, where R is a polynomial ring. And, we have two sets that we have discussed so far with

topology, Zariski topology on this and the induced Zariski topology, on this; when this is

identified with the maximum spectrum of S.

And,  we ask  if  you have  an  irreducible  subset  of  spec(S),  thus  its  intersection  with  the

maximum spec given a reducible subset of the maximum spec, so that is what we are asking

here.  V ( p )∩Z ( I ) is it irreducible in, so the assumption here was that it is irreducible; is it

irreducible here that is what we want to know. 

So, let us assume that now it is that there is some like this, but the point is p contains I; so let

us Q be the inverse image andV ( p )∩Z ( I ) which means all the maximal ideal is containing p,

maximal ideals of S containing p, but that is just the same thing as we can rewrite it like, this

it is just maximal ideals containing Q.



So,  then replacing  S by S/p we can assume that  S is  a  domain,  so that  spec(S) itself  is

irreducible,  it  just  simplifies  a  notation  proceed  further.  And,  then  we  ask,  under  this

assumption if spec S is irreducible is the max spec irreducible ok, the answer is yes; if not, so

we going by contradiction. There exist ideals J1 and J2 in R such that their respective 0 sets

are proper subsets of max spec Z(Q), but the union equals Z(Q), so such a thing exists.

So, then this is the product; so then there is a claim and we prove the claim, but the claim

does  lead  to  a  contradiction,  because  J1 is  equal  to  Q  or  J2 is  equal  to  Q,  so

Z (J i )=maxspec (S )  for i = 1 or 2. So, it then remains to prove a claim and the claim is quite

straightforward, all that reduces that there is one element inside J1not in Q, therefore every

element of J2should be inside Q. So, this is the end of this lecture. 


