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Welcome to the second lecture of Computational Commutative Algebra. So, in this lecture,

we will lo at ring Homomorphisms, ideals and some operations on ideals. 
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So, let us define a ring homomorphism. So, a ring homomorphism is a function between two

rings. So, let R and S be rings. Sorry, before I forget. From now onwards when we say ring,

this means commutative ring as we defined last time. We might have to come we might have

to deal with some non commutative rings later. But if that is the case, I would explicitly

mention that we are discussing a non-commutative ring; otherwise for most of the course, we

will only be discussing commutative ring and it is therefore, we will just call it a ring.

So, this is as we defined it last time . So, let R and S be rings and so a function f :R→S is a

ring  homomorphism,  if  it  satisfies  the  following  properties.  One,  f  respects  addition;  f

respects multiplication and these two should be true for every pair of elements r ,r '∈R and

third, f  takes the multiplicative identity of the ring R to the multiplicative identity of the ring

S. So, this is what we say, it is a ring homomorphism.

So,  remember  the  first  part  is  said  it  respects  addition,  second  part  is  said  it  respects

multiplication  and  third  is  said  it  respects,  it  takes  the  additive  identity  to  the  additive

identity. I am sorry it takes a multiplicative identity to the multiplicative identity, and here; I

did put the subscripts to make sure that here we are referring to the one of the ring  R and

here, we referring to the one of the ring S. 
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Another definition; let  f :R→S be ring homomorphism;  f  is said to be an isomorphism, if

there exist a ring homomorphism g :S→R that is in the opposite direction such that the two

composites g ∙ f=IdR and f ∙ g=Id S.



So, let us look at; so, this is the notation for the map in which f  is applied first and then, g is

applied. So, this (g ∙ f ) is going to be a map from R to R is the identity map on R that is IdR.

And this (f ∙ g) is a map from S to S and this is the identity map on S that is Id s. The function

on R to R given by this composite is identity map and this is the identity map on S. 
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Say that two rings R and S are isomorphic, if there exists ring isomorphism between them.

So, this is a one does not have to specify in which direction, the isomorphism is because if

there is an isomorphism in one direction, the other map is also an isomorphism, so, just one

piece of terminology. We might often say ring map to mean a ring homomorphism. 
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So, I want to discuss few exercises which I will anyway write up during the course of this,

weekly once or twice a week. But let me just at least discuss them. In part because I might

use them later without proof, I assuming that you will do these exercises regularly. So, in

these exercises R and S will denote rings (commutative rings) and f :R→S is a ring map. In

other  words  it  is  a  ring  homomorphism.  f (0R )=0S.  So,  this  is  not  part  of  the  definition

explicitly, but it follows from the definition that this is true.

So, one must prove this which is why this was not explicitly stated, the only part that was

stated was about the multiplicative identity  and  f (−r )=−f (r) for all  r∈R,  where minus

denotes additive inverse in the two different rings. 

So, in fact, I mean putting these together, we see that if you think of it not as a map of rings;

but from the Abelian group ¿ to the Abelian group ¿ is a group homomorphism. So, in sort,

that is the first observation that we would like to make and the second thing that  f  is an

isomorphism, if and only if f  is bijective.

So, the point of this exercise is if f  is an isomorphism, then there is a g with composites are

the two respective identities. So, that will automatically make it a by bijective function, but so

the contract is in the other direction, that if f  is a bijective function; then, the inverse function

is a ring homomorphism and then, it has a desired properties and so, please check that. Third

exercise, there exists a unique ring map from the set of integers Z to any ring. Given any ring



R, there is a unique map from the ring of integers Z. So, this is a unique property of the ring

of integers in when we are studying rings.
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So,  one  more;  it  is  a  little  definition.  An element  a∈ R is  invertible.  So,  I  am defining

invertible or sometimes it is called a unit, if it has a multiplicative inverse, we call that in the

definition of a ring. We did not say that under multiplication, the nonzero elements form a

group;  only some elements  may have  inverses.  For  example,  in  Z,  only  1 and  −1 have

multiplicative inverses. Show that  f (a) is invertible, for all invertible  a∈ R; so, just to get

familiar with these properties of rings and homomorphisms. 
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Now, let us look at some examples of these things; polynomial rings. So, then there is a map

from  R→R [X 1 , X 2 ,…, X n],  R is a commutative ring in which ring element  r goes to the

constant polynomial r X 1
0X 2

0…Xn
0. So, this is the ring homomorphism. 

So,  now this  ring homomorphism has  a  certain  universal  property and what  is  that?  Let

f :R→S be a ring map and s1 , s2 ,…, sn some elements in S, then there exists a unique ring

homomorphism ~f :R [X1 , X2 ,… , Xn]→S, n being the number of elements of s that we chose

here to S, such that ~f ( r )=f (r ) and 
~
f (X i )=s i for all i=1 ,2 ,…,n.

So,  what  does  it  say?  It  says  that  given any ring  map from  R to  S and  some elements

s1 , s2 ,…, sn inside S, the ring map extends to a unique ring map from the polynomial ring in n

variables  over  R to  S in which the constant polynomials,  the constants get mapped as it

mapped it, as they were mapped under f  and the variables get mapped to the corresponding

elements .
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So, for proof, you have to show that there exists a map. So, you can just try to do it. So do the

details as exercise. I will just define, what I will just give you a hint. And so, if there is a

unique map and if you can produce it, it would help us to show what it is. We need to prove

its uniqueness. So, define  
~
f (P (X 1 , X 2 ,… ,X n )) of a polynomial  P (X 1 ,X 2 ,…, X n ) to be you

first apply f  to the constants of P and then, you apply that to s1 , s2 ,…, sn.

So, by this, we mean apply f  to the coefficients . So, this is the hint and please try to fill in

the details and finish this exercise. So, now, let us lo at some little bit of Macaulay 2 code to

see how this is done in Macaulay 2. 
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So, here is how this is done in Macaulay. So, I am defining a ring with two variables X and

Y, with rational coefficients R. Another ring with variable t rational coefficients call that ring

S. 

Then, we define a map, f , notice the order in which its written. So, typically when we write,

we write arrows to the right; but Macaulay the arrow is written to the left and so, it is a ring

map from R to S in this from right to left. So, it is written S,R and then, we give a lift list of

elements here.

So things, that are enclosed in these curly brackets. List of elements in here which are what

these variables should take. So, this one says that X will go to t2 and Y will go to t3 and then,

it is understood that rationals will get map identically to the rationals here. So, let us see how

let us see if Macaulay has understood, what we asked for it to do.
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So, here is the screenshot of the output of we are checking. So, then, we are asking Macaulay

what is f (X ), then it replies t2, element of S.
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Here, we ask f (Y ). In line 5, we ask f (Y )., it replies t3 and an element of S. Then, we ask

f (X 2), it is a t4, element of S.
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Definition. Let  f :R→S be a ring map, the kernel of  f ,  is the set  {r∈R|f (r )=0}. Another

definition, let I  inside R be a subset say that I  is an ideal of R, if two conditions; (a) I  is a

subgroup of the additive group and (b) for all r∈R and for all a∈ I, ra is inside I . So, it is

closed under multiplication by arbitrary elements of the ring and is then, a subgroup of the

additive group of R such a thing is called an ideal of R.
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So, here is a proposition which you should prove. Let f :R→S be a ring map, then kernel of f

is an ideal of   . So, now, we would like to see how Macaulay2 computes these things. So,



before that, we need to make sense defined just one term. Definition; A subset G inside I  is

generating set, I  is an ideal here.

Sorry,I  is an ideal, G is just a subset generating set of I , if for all a∈ I, there exists a finite

sub collection g1 , g2 ,…, gm∈G and a1 , a2 ,…,am∈R such that a=∑
i=1

m

ai gi. That is a is the R

linear combination of these m elements. So, such a set is called a generating set the set itself

could be not finite, that we have not just mentioned anyway. However, for every a, we have a

finite subset with this property .
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A generating set is said to be minimal, if no proper subset of it generates I . So, it is minimal

and under containment inclusion of sets . So, just one notation, we will use it mostly for finite

sets. So, I will just do it for finite sets, let us say G is a finite set consisting of  n elements

inside  R. Then, we write with ordinary brackets,  (g1 , g2 ,…, gn) this is the notation for the

ideal generated by G.
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So, now let us look at an example. So, we asked for kernel of  f , remember  f  is this map

which goes fromQ [ X ,Y ]→Q [t ]; X goes to t2, Y goes to t3 and we ask for its kernel and it

says  kernel  of  f  is  ideal  generated  by  X3−Y 2.  In  other  words;  every  multiple  of  this

polynomial by arbitrary element of R.

So, now we can; so, we do not know how this is computed. As we progress in this course, we

will learn how this is computed; how Macaulay2 will compute this. But right now, we will

use this as a help for us to prove it, that this is the kernel. So, the details, I will leave as an

exercise. I will list out the steps, but let me just briefly say how it is done. 
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So, the map is from Q [ X ,Y ]→Q [t ]; X goes to t2, Y goes to t3 and Macaulay2 tells us kernel

of f  is the ideal generated by Y 2−X 3 and we asked can we prove this statement. So, how do

we do this? So, that so first of all we know that. So, now, try to prove this by hand. 

We know that f (Y 2−X3 )=(t3)2−(t2)3=0. Hence (Y 2−X 3 )⊆ Kerf . Now, we want to prove the

other inclusion. 
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So, to show the other inclusion which is Kerf ⊆ (Y 2−X 3). So take an arbitrary element here, it

is  a  polynomial  in  two variables.  So now, the  point  is  if  you take  a  polynomial  in  two

variables;  one  can  think  of  it  as  a  polynomial  in  the  variable  Y,  where  the  coefficients

themselves are polynomials in X. 

One can write this using division algorithm, p (X ,Y )=q (X ,Y ) (Y 2−X 3)+r (X ,Y ), all that we

have used here is that this is a monic polynomial in the variable Y plus some remainder

polynomial X, Y; where, this has a certain property, either this is 0 or its Y degree should be

less than the Y degree of this thing Y 2−X3 which is 2 .

Because, if it had a term that involved Y 2one could divide by again and then move it to the

side. So, in other words r (X ,Y ) is of the form r0 ( X )+r1 ( X )Y  and one has to show that. So,

the point is that p(X ,Y ) is in the kernel of f , this is in the kernel, this is in the kernel, this is

in the kernel . So, both p and this term at the kernel, so; the term on the left and the first term

on the right are in the kernel.
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So,  hence,  f (r0 (X )+r1 (X )Y )=0 and  this  will  so  what  does  that  say?  This  says

r0 (t2 )+r1 (t2) t3=0. Now, I will just say what this is. So, this is a polynomial in  t  in which

every  term has  even  degree.  This  whole  thing,  while  this  is  odd,  the  entire  thing  after

multiplying by t cubed is odd degree in t  and the way they can be 0. 



The sum can be 0, only if both of them are 0 and that says that which says that p(X ,Y ) is in

the kernel of f . So, there are some exercises, one if you have not seen a proof of the division

algorithm for rings like this, then please for monic polynomials, please learn that and then,

check these details. So, this is the proof. So, this is how we use these computational algebra

systems many times which is it shows us a computation and tells us what we can prove and

perhaps even how we should go about proving it.
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S this is the end of a 2nd lecture. In the next lecture, we will look at prime ideals, maximal

ideals, operations on ideals and then, we will prove what is Noetherian rings and we will

prove. So, in the next few lectures, we will prove what is called the Hilbert Basis Theorem;

simultaneously, developing some ideas of computation. 


