
                                      Computational Commutative Algebra
Prof. Manoj Kummini 

Department of Mathematics
Chennai Mathematical Institute

Indian Institute of Technology, Madras

Lecture – 18
Nakayama Lemma

(Refer Slide Time: 00:17)

This is lecture 18. In this, we study the determinant trick and prove important result that gets

used all the time called Nakayama’s Lemma. 
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Proposition:  let  M  be  a  finitely  generated  R-module,  generated  by   {m1 , . . . ,mn}.Let

φ :M→M  be a R-linear map and  let I be an ideal of R,  φ such that  φ. So, both these are

submodules of M. 

So, this suppose there is a containment. Then, there exist  a1 , . . . , an such that, a i∈ I
i  ∀ iand

φn+a1φ
n−1

+. . .+an+idM=0 .

So,  let  us  just  make sure  we understand what  the  statement  means.  Notice  that,  φ  is  a

homomorphism from M itself. So, we can compose it multiple times and we can talk about

powers of  φ. And, this is just zero times identity just the identity matrix. This is ones and this

is the identity matrix.

Now, where does this expression live? Well, this is also because these are R linear maps we

can talk about a 1 times I mean a 1 is an element of the ring. So, you can talk about a 1 times

a map and we can talk about sums of such maps, because maps form a module, so that is

where this  is expression lives. 

So, this is a statement about certain map being 0. Proof is very elementary linear algebra

except that, we have never thought about these things for modules that is it. We have done

this many times for variations of this for vector spaces.
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Proof: We know the hypothesis is that φ (M )⊆ I M . So 1 ≤i ≤n , write 
mi
φ

) = φ (m i)=∑
j=1

n

aijm j ,

a ij∈ I ∀ i , j .   So, let me just explain why this is possible φ (m i) is an element inside here. 

So, we can take some ideal generator of the ideal times m1 plus something in I ,1 times m2

and so on. And, when we combine it we will get an expression like this. So,   a ij∈ I  . So, this

is the observation that such a thing can be written for each i. 

So, this can be expressed in terms of a matrix, (
φ (m1)
...
...
φ (mn)

)=(
a11 a12 . . . a1n
. . . . . . . . . ...
. . . . . . . . . ...
an1 an2 . . . ann

)=(
m1
...
...
mn

); we get a

matrix expression like this. 

Then, so here is the trick that we have done for vector spaces, but not or when you study

eigenvalues  etc.,  we have done this.  But,  so now, we have thinking about these as these

elements as not just the elements of R, but elements of the R of a larger ring which also

includes the endomorphism φ.

(Refer Slide Time: 06:55)

So, in that ring which is a commutative ring because every element of R commutes with that

is the linearity R linearity of φ, and then multiples of φ commute with each other because this

is just the same, I mean same map. So, if you have a single map this is a commutative ring. 



And, so in this ring what we have is that,  (
φ−a11 a12 . . . a1 n
a21 φ−a22 . . . ...
. . . . . . . . . ...
an1 an2 . . . φ−ann

)=(
m1
...
...
mn

). So, M is also

module over that, and in that over that we get this expression. So, this expression this matrix

has entries in ring R [φ ] and not in R. But, what does that say? 

(Refer Slide Time: 08:41)

 they are Kramer’s rule. We use it to find a inverse of a invertible square matrix by taking the

adjoint  and dividing  by the dividing  by the  determinant.  But,  if  you do not  do that,  the

statement is the follow if you do not try to divide by the determinant the statement is the

following.
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So, first of all let us call this matrix A.

(Refer Slide Time: 09:25)

So, now Kramer’s rule, it says adj( A) the way it is usually defined in a linear algebra over

fields of course,  adj (A ) A=det (A ) I n. This is true. The only problem trying to find inverse

using this is if determinant of A is not invertible we would not be able to divide it, but this

statement is true over any commutative ring. This is the n by n. So, this is what we have.



So, now let us multiply both sides by adj( A). So, now this one says. So, if you multiply both

sides by adj(A), we get that det (A )(
m1
...
...
mn

)=0. But, what does determinant of A look like? This

is  where the expression looks exactly  like the way we would construct  the characteristic

polynomial. It is just a polynomial in the, in phi where the entries will be will come the way

we compute  
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So, the determinant of A has a form   φn+a1φ
n−1

+. . .+an idmwhere  idM  identity map on M.

So, this is form. So, this is an element of R adjoint φ; it is not an element of R. But, what this

is say? It says det (A )mi=0 for all i; in other words, det (A )M=0

. In other words, this is a 0 map.

Remember,  this  is  an  element  of  this  is  thought  of  as  some  powers  of  φ,  which  are

endomorphism’s and R linear combinations that is an endomorphism. So, this implies that

determinant of A is the 0 map .I mean a function is 0 is the 0 map. 



So, this is the proof of the, and then by one can check that the coefficients have this property

that they are in increasingly larger powers of   φ  that it is a property of the determinants. So,

this is what this is a proof of the theorem of this determinant trick. 
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So, now there are many applications of this. So, corollary. M finite,  corollaries of always

will apply for finitely generated modules.  Let M be a finitely generated module , if IM = M,

then there exists some x∈R such that, x M =0 and x is congruent to 1 modulo I. In other

words, in the ring R/I , x = 1, that is what x is want to into . So, x-1 ∈ I . 

So, proof. So, we need to understand this condition  M=φ (M ) in terms of the determinant

trick. So, this result this proposition is called determinant trick. So, we need to understand  M

= IM in this context. Well, the map that we have to consider is identity. So, φ=id. 

So, then we are saying M ⊆ I M , but which means  M= IM. So, we need to understand this.

So, apply proposition with φ=idM , this is a proof I am sorry. So, apply the proposition with

this. So, now what do we get? so, notice that if you take a identity map and raise it to any ith

power, this is same; this is just the identity map itself.
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So, we get a1 , . . . , an∈ I  such that (1+a1+. . .+an ) idM=0  So, notice that this element is inside;

so, call this element b ; and b ∈ I .

So, now, what do we know   ( 1+ b) M = 0 because ( 1+ b) M   is just I mean it does not

change M at all.  So, if you take this composite,  I mean this  whole map and apply to an

element of M, it is just this element multiplying that element of M. So, this is just( 1+ b) M =

0 . And, let us define x= 1+ b. So, that therefore, we get xM = 0, and x−1∈ I . So, this is

what we are asserted. 
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Another important corollary. so any version of this is called Nakayama’s Lemma, but maybe

the only the local version we will you say Nakayama’s Lemma. 

And, we will usually write NAK to abbreviate this in these lectures. So, what does that, what

does the statement say? Suppose that (R, m) is a local ring, M finitely generated. If M = mM

the maximal ideal times the module itself. So, this is a submodule of M. If M equals the sub

module, then M =0. So, proof apply previous corollary. 
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To get x∈R such that x M=0, and 1-x  is in the maximal ideal, but let us see what x is. So, is,

we claim that x is a unit. So, consider the ideal generator by x. If x is not a unit,then ( x )⊆m. 

And, this implies that 1∈m. Every proper ideal is contained in a maximal ideal. If x is not a

unit, then x is not invertible, then this is a proper ideal and it must be inside the maximal

ideal; therefore, the unique maximal ideal. And therefore, 1 by from this expression, we get 1

is inside m; this is a contradiction. 
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Hence, x is invertible. Let y be its inverse. When we say invertible for multiplication and here

we mean its multiplicative inverse. So, then y.x.M = 1.M on this side it is 0. So, M=0. So, it

is this version that we often use as Nakayama’s Lemma in many applications. So, if you have

a local ring finitely generated module if it is, if M = mM, then M = 0.

(Refer Slide Time: 20:21)

Just one more corollary. So, this is another application of the same, same result; it is just a

variation of Nakayama’s Lemma or we can call this the Nakayama’s Lemma. So, let again M



be finitely generated over local ring (R, m). Let x1, . .. , xn inside M be such that, their images

such that, their images in 
M
mM

 generate 
M
mM

 as a 
R
m

 module. 

This is a vector space if this is a R/m is a field, therefore, M/mM is a finitely generated

module over it, so it is a finite dimensional vector space. So, then we can talk about some

elements. And, elements of here R residue classes of elements of M. So, let us just pick n

elements  in  M;  whose  residue  classes  will  generate  this  finite  dimensional  vector  space.

Then, x1 , . . . , xn generates M as an R-module,. 

So, this is how. So, let me just read this once more. Let M be a finitely generated module

over R mod R, m local R, m. And, we have a finite generating so we take some finitely many

elements  inside  M; whose images  in  the  quotient  generate  the quotient,  but  the  quotient

module over R/m. So, this is a; this is a field. 

So,  this and since M is finitely generated the quotient  is also finitely generated over the

quotient ring. So, this is a finite dimensional vector space. And, we are just saying pick a

spanning set, but pick a spanning pick elements in M whose images form a spanning set, then

those elements generate M as an R-module.
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Proof:   let  N=Rx1+...+Rxn. N is a sub module of; sub module of M. What do we know

about this module? So, let y ∈ M, then so  we will put bar to denote residue classes mod mM.



So, now what do we get?  so, there exists. So, we get there exists some elements in 
R
m

, but .

So, we could just take elements in R itself and there exist r1 ,…,rn∈R such that; so, y ∈M . 
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So, if you look at it  is  ý  image in M/mM, this is  y=∑
i=1

n

r i xi .This is the hypothesis that

M/mM is generated by these elements n elements. But, what does this mean? So, this means

that y −∑
i=1

n

r1 x i∈mM . So, every element can be written as a sum as an element of N plus an

element here. So, this implies that,  M=N+mM . So, this is what we have. So, where does

Nakayama’s Lemma come into picture?
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So, now let us consider 
M
N

.  This is finitely generated (R, m) -  module. And, if you multiply

this by m, if you write   
(M /N )

m (M /N )
=

M
(mM+N )

=0. Therefore, by Nakayama’s Lemma M = N

this is what we wanted to prove, that those elements x generate M . So, this is what we want,

M is equal to the sub module which is what we wanted to proof. 

So, this is the end of this lecture. And in the next lecture, we will discuss a little bit about

spectrum and some topology on spectrum called  Zariski  topology.  And,  so the  what  we

wanted to understand I mean how we will proceed that, is to understand the what is behind

primary prove the results about primary decomposition and associated primes, and how it fits

in, what is I mean why is it relevant in this when we study solving equations v of i looking at

zero sets of ideals etc. 


