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Welcome to lecture 17, in this lecture we discuss basics of about Localisation and this is

the topic that we will come to again and again. So, we will see as and when we need we

will discuss this as much as possible. So, what exactly do we mean?.
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So, definition: a , R is a ring is called is multiplicatively closed, if  and for

all . So, for example,1) the nonzero elements in a domain,  2)  ,

where P is a prime ideal. By definition of P being a prime ideal, it is clear that if u and u

prime are not in P, the product is not in P and 1 is definitely not in P.

 So, really  the first one is an example of the second one and, but there is a new example.
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3) let  not nilpotent, In other words,   there does not exist m such that  ok.

Then the set  is multiplicatively closed. So, this is what we mean these are

examples of what we mean by a multiplicatively closed set. There might be others also

for example, you could take a union of two prime ideals and then take the complement

and so on. 
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 Let  be a multiplicatively closed set. By  (or   or ) various

notational  convention  used  by  various  authors,  we  mean  the  set  

under an equivalence relation. 
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 where this is the equivalence relation if there exists some  such that

. 

We denote the equivalence class of  (r, u) by the fraction  . So, really we are saying

we are thinking about fractions, but of course, as in Q, . So, it is really there. So,

this is really that statement, how do we identify two fractions and if we are working  in

general not just rationals one needs to put this as the definition. 

So one define such a set and few.
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So, for example,  ,  where  .  Or the rational  function field in  one

variable  is  ,  where  U  is  the  non-zero  polynomials.  So,  it  is  these

constructions that actually the that construction  generalizes. 

So, what is so, just a little bit of notation. 1) If , where P is a pime  ideal  then

 is typically written as , 

2), if , a not nilpotent, then  is typically written as  or  

.

So, this is just variations of a notation that one would keep using or comes across  but

why are we studying this. 
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 is a ring,  you should check not very difficult at all. How I mean as how one

should add fractions. So, just keep that is all that you have to keep in mind.

And  in which a ring element   is a ring map. So,  is injective,

 is injective, but in general they it need not have such properties. So, it is

injective. 
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What property does this ring have?. Proposition: every ideal of  is an extended

ideal (from R). .

There is an ideal in R whose extension gives J, but this might sound like a curiosity, but

it has an important application we will prove the proposition just. This is the first time

we are coming across this notion of working with fractions etcetera I will do it. So, that it

become we become familiar  with  that.  So,  it  says  an  important  application.  If  R is

noetherian,  is noetherian. 

That is because everything is an extended ideal. So, whatever generating set generate set

in I will generate it as a  also, but it is a finite generating set here. So, there it is

finite generating set there. So, this corollary is important.
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So,  now  let  us  prove  the  proposition.  So,  let  J  be  an  ideal  of  .  Let  take  a

generating set for it ,  be a generating set. 

So just we keep saying generating set there is no significance to that statement there is no

substantial significance to the set (Refer Time :11:16) proof J itself is a generating set for

J. So, one could have just taken J itself, but what I want to say that the argument works

for every generating set. 



Now let . So, these are the numerators that appear

in the fractions inside . Let I be the R_ideal generated by  . The claim is that J is

the extension of I let us write that.
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So, notice that  for every   can be written as . So,   and  .

So, in other words  generates the same ideal as G in   .

After localisation, G does not belong to R. So, this statement make sense only in 

and from then we can conclude that I extended.  This implies  

Notice that I itself  a subset of J therefore, if you extend I to  it is going to be a

subideal of J. But already the subset   generates J. So, therefore, I also generates J.

So, this is what we need in this proof . So, every ideal is an extended ideal.
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So,  again one more piece of notation. We will write   for I extended to  

and later we will see also for modules. So, here  some important proposition, I mean

basic properties of this which keeps which we get keep using all the time.

So, U and R as above. 

1) For any R-ideal I,  if and only if . If this is true then there is

will be some element inside I and 1 over that would also be inside this ring. 

So, some  that will give 1. So, that is what one will have to check.     

2. Let  be a prime ideal such that   So,   is not going to be the

whole ring ok.
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Then  is prime ideal of . So, this is what we have. 

3. Conversely if q is a prime ideal of , then we can look at the contraction of q to

R, which is a prime ideal of R and then  . 

And, so these are the statements that  can be proved relatively without difficulty. So,

proof is left as an exercise. So, the point that one gets from these is the following.
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So,  recall  that  what  we  called  the  prime  spectrum  of  R

,  This  we  you  did  this  in  the  exercises  which  we

denote by spec (R). 

Now what does  the previous proposition say it says that there exist an injective map

. And the map here is   and that is a prime ideal here

and know from the last part if q and  are different then the target will also be different

that is what the last part is saying. So, this is injective. So, this is one application. 

So this sort of observations I have to do with giving a topology on the set spec(R) which

we will do soon, but that is where that is where the sort of discussion goes to.
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So, just now we can talk about localising modules. We can similarly define  for an R

module  M,   modulo  an  equivalence  relation,  where

 if there exists some  such that . 

So,  again it  says the two fractions are same and we check this  by multiplying cross

multiplying the denominators  that is the idea behind this. To work in to make it work in

all generality not just with rational numbers one needs to also put this inside here. 

So, this is a  is -module.
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And so, let  be a an R-linear map of R-modules. This gives an  - linear

map .
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Which we will define like a fraction  . what is a map? So, here are

elements of the form  and this gets mapped to . So, this is a - linear. So,

any such f gives such a map. 
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So, one more definition in this context, a ring is said to be a local ring if it has a unique

maximal ideal. 
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For example, so let us look at the example that we saw. Let , where p is a prime

ideal. Of course, fields are local rings, but again that is not if these were the only local

rings it map this notion may not be of much use. So, there are other things.



Now what are the prime ideals of  ? So, the earlier  proposition which in part we

proved in path within proof gives the following, which is that they are exactly those of

the form
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, where  , and this condition is just the same thing as . 

So, this is what that proposition said that, the prime ideals that do not become the whole

ring after localising are exactly  the prime ideals that do not that do not intersect the

multiplicative closed set and when we extend those things you will get prime ideals and

these are the only prime ideals of the localised ring of . So, these are exactly these

form. So, hence the extension of  is the unique maximal ideal of .
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So,  this is an example of a local ring. There are other local rings also which  does not

come out as localisations like this immediately.

Another example and this is very closely related to a polynomial rings in a way.  So, let

me just  say non example,  k[x] is  not local.  why? For every irreducible  ,

 is maximum and there are infinitely many irreducible polynomials.

So, therefore, there are enough. So, this is not a I mean one of the rings that you will

become familiar with in the course of this these lectures is actually not local. 
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But  an example, by  and by one can do it for more variables, but just to get familiar let

us do one, we mean the ring of what is called formal power series over k. So, let us again

put k to be a field .
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So, what are these? This is just say elements of k are of the form  

and no statement like, so unlike for a polynomial for this to be a polynomial it has to be 0

after  a  while,  in  finitely  many  stages  it  has  to  become  0.  Here  there  are  no  such



conditions. And then one can check that   is a unit iff and only if .

So, that is one statement one can check.
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The ideal (x) is maximal. And every proper ideal of k[[x]] is inside (x). So, this is a local

ring. So, various algorithms that one can work in polynomial ring can also be extended to

such power series rings, but that is not something that we will pursue we see at all in this

course. 
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So just one piece of notation before we finish. By when we say, we say we say  it

is a local ring to say that R is a local ring  with unique maximal ideal m . 

So, that is the end of this lecture and in the next lecture we will look at what is called

determinantal trick and Nakayama’s lemma and then we will try to understand some idea

of the topological aspects of spec(R). 


