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So, we continue our discussion about Modules and we will  also see some Macaulay

examples .
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So, the first thing that we would like to observe using the Hom module that we saw last

time  is set of R linear map from M to N.

So, suppose we had   and we have a map from   . If we compose

this we would get a map . So, this is the composite , what it does is think of this

as something fixed that  to  is some fixed map, then for any f there exist a map

here which is a composite. So, what have we obtained? We have obtained a map from

.

 is you first apply f to get to   and then you apply phi. So, this is the

definition of what  means and one can check that this is R-linear. So, this itself is.

So, remember these are R-modules and this is an R-linear map. So, given this data one

gets for every M one gets a map like this. So, this is one observation.
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So,  now we  would  like  to   define  what  is  called  an  exact  sequence  of  R-modules

 is exact.

So,  whenever we say exact it only it only applies at a place where there is a map coming

in and a map going out. So, right now sorry I am just trying to define this term exact ( at

) one cannot talk about exactness here or there the way we have.

If sorry we need some names for these things called this thing f and call this thing g

. So, this is what we have.
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So,  exact means its exact at N because that is the only place where there is a

map coming in and going out  if and only if f is injective.

Similarly, some  exact again exact in the mid, that is the only place where

the question make sense if and only if again let us call this map f; f is surjective and

given  we get an exact sequence  that is just to say it is an

submodule  first  map  is  injective  and  then  .  So,  this  just  says   is

surjective.  This much says  is a quotient module and the middle part says. So, let us

label this map f and g ,middle part says which is precisely what it is the

 = N. So, given a submodule inside a module we get an exact sequence like

this.

This such a thing is called short exact sequence to say that to denote that there only three

at most three nonzero terms. The left 0 is  to indicate that this is injective the right 0 is to

indicate that this is surjective. So, such a thing is called a short exact.
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So, if you remember what we did in the finite presentation. So, M is finitely presented

means that there exist an exact sequence  with  and   both are free

and of finite rank. So, this is the we just restating what we know yeah in this language.
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So, one reason  one would like to study such things is the following proposition, let M be

an R-module then the following are equivalent. 

1) every submodule of M is finitely generated.



2) ascending chain condition holds for M for sub modules of M.

3) every non-empty collection of submodules has a maximal element.
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So, ascending chain condition means, what we similar to what we discussed  for ideals if

you have  let us that is called an ascending chain, then there exist m such

that for all ,  after a while it stays constant.
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So, I the proof is the same identical to the proof there we did for ideals. So, this is an

exercise and then now we define M is said to be noetherian.  So, we are not saying

anything about R we just saying M is noetherian. So, we  say M is noetherian R-module

if the conditions above hold for M.  I mean if any single one holds the other two also will

hold.

So, any one of them holds for M. So, then M is said to be noetherian. So, why did we set

up  all  I  mean  one  of  the  reasons  its  sometimes  easy  to  describe  in  terms  of  exact

sequence is the following proposition.
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Let  be a short exact sequence short because they are only three at

most three nonzero terms you can say.

Then,  is noetherian if and only if  and  are noetherian proof is an exercise

not  very  difficult.  If   is  noetherian  every  submodule  is  finitely  generated  a

submodule of  is also submodule of . 

So, every submodule of  is say finitely generated; similarly if you have a submodule

of   its  inverse image here will be a submodule of   and then you can that is

finitely generated and that finite generating set is enough to generate its image inside

 and then your work a little bit to prove the other direction. So, all that is an exercise.
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So, now just one remark R is a noetherian ring, this is something that we defined a while

ago to me that every ideal is finitely generated if and only if it is a noetherian module

over itself. I mean if we consider it as a module over itself then it is a noetherian module.

That is that is because the R-submodules of R are precisely the ideals. So, in this study of

commutative algebra as well as its applications to algebraic geometry, number theory,

noetherian rings and  noetherian modules are quite important .
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So, here is a proposition which gives us a large class of noetherian modules as which are

also I mean in the important in applications.

So, let us say R is a noetherian ring, M an R-module then the following are equivalent:

1) M is noetherian,

2) M is finitely generated.

3) M is finitely presented.

So,  there  are  some  implications  that  are  immediate  from  the  definitions  if  M  is

noetherian then  every submodule of M is finitely generated. So, in particular 1 implies 2

M itself is a submodule of M. So, it is finitely generated by definition.

Similarly,  finitely presented assumes its already finitely generated.  So, that implies 3

implies 2 hence we need to show that 2 implies 1 and 2 implies 3.
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So, we need to show that 2 implies 1 and 2 implies 3. So, the key  what do we know

about a finitely generated R-module that there exists a finite rank free R-module F with a

surjective map . So,  this is what hypothesis 2 tells us.

 So, the first observation that we would like to make is F is noetherian why is that so? 
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So, this is induct on the rank of F. By assumption if , then F is isomorphic to R

which is noetherian otherwise there exist an exact sequence . So, this

you should prove and you will prove this is what is called as split exact sequence with

 free of rank equals . 

So, its exactly like vector spaces in this situation. So, R is noetherian;  is noetherian

therefore, we can conclude that F is also noetherian. 
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Since there exist a surjective map , M is noetherian.

Now,  let  us  call  this  map  . kernel  of  is  an  R-submodule  of  F.  So,  it  is  finitely

generated that is because F is noetherian, again we are using the fact that F is noetherian

So, therefore, there is an  free of finite rank  such that  surjects on to .
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So, therefore, M is finitely presented. So, this is the proof that  over a noetherian ring the

three notions of a module being noetherian, module being finitely generated and module

being  finitely  presented  are  the  same.  This  is  an  important  situation  where  many

questions that we would like to understand or we study the situation would be some

variation of this thing.
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So, let us look at Macaulay example, here again let me just emphasize this first line

should be just ignore altogether, this is part of the code in the right part of the program

that writes the code takes the output and writes the documentation. So, just ignore that

altogether  and this  is  the input  part  the one that  is  the offset  from the left  is  input,

Macaulay2  input and this is the ah. So, this much in now type set are found is the output.

So, ignore this thing altogether. So, similarly that is just some comment line at the top

ignore that. So, let us see what are we doing we ask     then the way we

specify a free module is a caret and a number. So, this is a free module of rank 2, then we

ask is free module.

So, this is a function which takes an input module and returns Boolean output and here it

says it is free. So, then we ask isFreeModule R it says false and why?
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Well, So, R itself is a Polynomial Ring not a module I mean the type of R in Macaulay’s

R and so, you would give R to the 1. So, we ask its FreeModule R, I mean R super I

mean R carat caret 1 like a superscript then it says it is true.

So, one can verify this using the command to check what the type of some quantity is

class and if you check this you will you will get these two one thing. Sometimes if some

functions give unexpected answers its a good idea to check these things or if you are

using a function then its better to check what type of the input should have and we are

going to use output what type it has.

So, now, we can define. So, we saw earlier that if you have a  finitely presented module

over it can be written as a cokernel of a matrix. So, here this is what we do we define a

and f = map( R^2, R^1, matrix{{x}, {y}}) to be a map to the free module  from the

free module of rank 1.  So,  remember the maps arrows always in the right to  left  in

Macaulay and the. So, this is a matrix its a matrix. So, each. So, a matrix is a list of lists

each individual list in the list is the rows.

So, this is a 2 by 1 matrix. So, here its 2 by 1 matrix. So, this is what it does and yeah.
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So, here it just constructed the cokernel of this matrix.
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We can given a matrix we can ask for its presentation matrix these are over noetherian.

So,  anything  finitely  generated  its  finitely  presented.  So,  it  will  it  tell  us  of  the

presentation matrix. So, here we define I to be an ideal of R and we write this command

called module of I which is to which is to construct the module corresponding to I.

Its the same its the same abelian group, but now its type has changed to module and its

something new. So, these are required. So, to keep then we write R_1/ (module I). So,



this is again this is this is still , but now thought of as a module and not a quotient ring

and we asked for his presentation matrix and here the ideal I was the idea generated by

the variables of R. So, it is  a maximal ideal in this case and here we get R- submodule of

.

Sorry  I  jumped one step. So, the output of module I is this thing. So, if you we gave I.

So, its an ideal of R then we asked for module of I its an image of this R-submodule of

R^1, then  we asked R^1/ module( I), then it said R-module quotient of R^1 and it just

gave the matrix for which it is a coefficient its a its said its a cokernel and then we asked

for its presentation matrix it showed as the matrix.
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 So, we asked here this is the input line Hom(R^5, R^5) what is it? It says it says R^20

its a free module of rank 20. So, this will you will do as an exercise if you have a free

module of rank a and a free module rank b Hom between them is of rank a b free of rank

a b this would be one of the exercises.

Let  us discuss a few more things if you have an ideal.  So, I an R-ideal,   R-

modules. So, this means I also implicitly mean that it is an R-submodule, now not just a



subset.  So,  if  you  have  this  then  we  can  define  .  So,  observe  that  IM   is  a

submodule  of M generated by  

So, its it is like taking the square of an ideal, but here its two different one is an ideal one

is a module again just taking the products is not going to give us a submodule, we have

to take the submodule generated by them meaning finite  R-linear combinations of such

things. This , but when you take combination is the coefficient can come from R.
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 So, this IM is a submodule. So, we can talk about  is an -module in a natural

way.

 So,  we are  in  exact  sequence  .  So,  now, what  if  we further  go

modulo  the  submodule  generated   by  I  inside  them.  So,  we  will  get  



So, in addition we are setting IM to 0. So, this exact . Notice that this was injective, but

here there is no guarantee that this is injective, but one would get such a sequence just

look at one more Macaulay case.
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So, one just one thing that I needed to explain while using Macaulay here is what of the

notion of what is called a subquotient. So, there is a help page on sub quotients. So,

please read that let us just quickly explain with an example here just take an ignore this

line. So, R is just a polynomial in two variables, I is the ideal generated by the variables

then we ask I/ I ^2.

I/ I ^2 is not an ideal. So, it would just it is written as subquotient of this and its given

two matrices then its a  subquotient and it says R-module subquotient of R^1. So, what

exactly does that mean?
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So, let us take a map  from a free module of rank 2 with basis  and basis .

So, rank 2 here and rank 1 here in which this matrix describes the map in other words 

goes to xe and  goes to ye that is what the first matrix here means similarly here its a

map from rank 3 to rank 1.

So,   basis and say  . So, this   goes to  ,   goes to xye and 

goes to   from here and notice that the image of the second map   is inside the

image of  and both of these are submodules of R^1 they the map has target R^1. 

So, this image is a sub module and it says I/I^2 is the quotient of  the larger submodule

by the smaller submodule that is what its called a subquotient and this is a way Macaulay

describes many modules and one can convert  it  to the usual description of quotients

cokernel of a map there are commands to that we will do and as we proceed we will see

these things. So, this is the end of this lecture.


