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Lecture – 15
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Welcome to lecture 15. So, in this lecture and the next, we will discuss about Modules and

very basic properties of these things; some of these, some other properties we will do in the

exercises.

(Refer Slide Time: 00:29)

Let R be a ring. So, we have just come out of the computational part; the initial discussion of

computational parts; so now from here onwards R is some arbitrary ring, commutative. By an

R  module,  we  mean  an  abelian  group  M  with  us,  with  an  action  of  R,  satisfying  the

following.

So,  what  exactly  we  mean  by  an  action  of  R×M→M ;  some  map  from  R×M→M

satisfying certain properties.



(Refer Slide Time: 01:42)

One, the element 1 of R should act on an element x of M as identity; so this is a notation. So,

r ⋅m is just a notation; one can think of it  as scalar multiplication.  And second, it should

respect  the  addition  in  R.  Three,  r ⋅ ( x1+ x2 )=r ⋅ x1+r ⋅ x2.  And  four;  it  should  respect  the

multiplication in R.

And this is ∀ x1 , x2∈M  and ∀ r1 ,r2 ,r∈R. So, if you think about it precisely; the definition

how we would formally syntactically the same as the definition of a vector space over a field.
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So, that is the most basic example. If, k is a field then the word k module is synonymous with

k vector space; with a set is a k vector space precisely when it is a k module. 2. If for Z; what

are modules over  Z? The word  Z module is synonymous with abelian group. So, M is an

abelian group and giving it an action of  Z respecting these properties, does not give it any

extra structure.

So,  Z module is precisely an abelian group and one of the advantage of study expressing

various things in the language of modules as opposed to just studying ideals and quotient

rings, is that first of all there are things that we must address and not just ideal. I mean there

are objects that are genuinely modules and not ideals and quotient rings. So this is a uniform

language to state and prove many theorems.

(Refer Slide Time: 05:13)

So, let me explain in a minute R any communicative ring; I an ideal. Then I is an R module

and  
R
I

 the quotient ring is an R module; in the natural way;  r ⋅ (r '+I )=r r '+I  So, this is an

element of R, this is an element of 
R
I

.

So, one advantage of discussing many things in modules is that of course, one has to worry

about them in general.  Even otherwise, if  you usually just  wanted to study, makes prove

theorems about ideals and quotient rings; the language of modules gives us a uniform way of

answering or stating or proving or going about proving them in a uniform way.
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Four, If  ϕ :R→S is a ring map; in other words that is S is an R algebra. Then S is an R

module in the following natural way. So, we will say through ϕ the map in the natural way.

So, we have to say what r ⋅ s is; so this r∈R; this is inside S. We define this to be ϕ (r ) ⋅ s, this

is actually an element inside S.

So, here we are defining what this dot means and here this is the product. So here this is the

product inside S which is already given to us. So if you have a ring map, in other words if

you have an algebra then that automatically gives a module structure.
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We can generalize that a little bit, suppose N is an S module. So, ϕ, S as above, then N is an

R module through ϕ. In other words, if you have r ⋅ y; this is inside R, this is inside S; again

we want to define what this multiplication means.

Define it to be ϕ (r ) y . Now, this is just the S module structure; this is an element of S this is

an element of N. So, we can think of it this way; we have some ring R here and a ring S here

and some module over that.  We can think of we can look at  this  abelian group as an R

module through this arrow. So, this is one another observation about modules.
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Definition: So, as soon as we introduces new structure, new class of sets; we would like to

understand the maps between the functions between that set, those sets of that type which

respect that structure.

Let M and N be R modules.  By an R module homomorphism or a homomorphism of R

modules, or just plainly R linear map from M to N; we mean a function f :M→N , but M and

N are not just sets they have such that there were extra structure.
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So, first of all they have an underlying structure of abelian groups such that f is a group

homomorphism and f (rx )=rf (x).

So, this times is in M, this times is in N, but it is all will defined ∀ r ∈R and ∀ x∈M . So, if

you had like r1 x1+r2 x2 then it is an abelians group of homomorphism. So, we can just take

out the plus outside and then we can apply this. So just a remark here; for a field k and k

modules M and N; a k module map f :M→N  is exactly a k linear transformation.

So,  really  we are not  doing anything I  mean at  least  definition  wise,  we have not  done

anything new, except just restating definitions in linear algebra.
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So, that is another observation that you would like to make is that the set of homomorphisms,

let M and N be R modules. The set of R linear homomorphisms form an R module.

So, we have to say what the map is; it is multiplication that we have to define. We have to

check that it satisfy the part of the definition, r ⋅ f  itself is a homomorphism from M to N. So,

this  is  going  to  take  some  x  and  you  have  to  say  what  this  x  is;  this  is  really  f (rx),

∀ f :M→N , ∀ r ∈R and ∀ x∈M . So we will write HomR(M ,N ).

So, this is like the statement that the set of linear transformations between two vector spaces

from one vector space to another vector space is a linear vector space itself. So one has to

check that this satisfies the definitions. Now, we want to look at special classes of modules;

so the first thing is what is called a free module.
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Before  that  one more  definition.  A R linear  map  f :M→N ,  so  I  am just  continuing the

notation M and N are R modules is an R linear isomorphism if there exist an R linear map

g :N→M  such that fg=I dN  and gf=I dM.

So, fg is a map from N to itself; so this composite is identity and gf  is a map from M to itself;

this is the definition, so this is an isomorphism.
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Let M ∈ λ , λ∈ Λ be R modules, by the direct sum which is denoted as this; so this is what

would  sometimes  we  call  the  external  direct  sum.  So,  we  mean

{( xλ ) λ∈ Λ|xλ∈M λ∀ λ∈ Λ , x λ=0∀but fintely many λ }.  By  the  direct  sum,  we  mean  the  set

which is really just take a long sequence I mean as many as there are elements in Λ, but do

not take arbitrary elements everywhere, take with this condition. So, at the λ-th coordinate;

you take an element from M λ, subject to this condition.

(Refer Slide Time: 18:49)

So, for example, if you take a polynomial ring in some finitely many variables is a direct

sum, where the indexing set Λ=N n and M λ is just R itself for all λ; so this is one example.

So, you could have an infinite infinitely many factors in the direct sum, but every polynomial

will have only finitely many terms; so this is what (Refer Time: 19:36).
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Definition, an R module M is said to be free, if it is isomorphic to a direct sum,  ¿ λ∈ Λ M λ,

where M λ is isomorphic to R ∀ λ∈ Λ. So, it is just a direct sum of some number of copies;

not necessarily finite of the ring itself.

(Refer Slide Time: 20:56)

So, for example k field; every vector space over k is a free k module. So, even this definition

does not introduce; it does not bring us anything new, when we discuss vector spaces over

free. Two, if R has a non zero proper ideal I, for example, if R is not a field; it will have a

maximal ideal different from 0.



So, any the second statement applies to everything that is not a field, then  
R
I

 is not a free

module. So, the reason is that, if you look at the definition of a free module because it is a

copies of R, there are elements in it. For example, you could take one in one factor and 0s

everywhere, that cannot be multiply to 0 by any non zero element of the ring.

Well, that is not true here; so it is a statement about free module. Free modules is always

some element which cannot be multiplied to 0, by a non zero element of the ring. However, if

you look at 
R
I

 non zero ideal I, any element of from the definition, any nonzero element of I

will multiply every element here to 0. So, this cannot be free.

(Refer Slide Time: 23:09)

Definition: Say that M is finitely generated, we will abbreviate this as f.g. So, this is the third

context in which we are using the same abbreviation to mean the same.

If there exists some finite subset {x1 ,…, xn }⊆M  such that ∀ y∈M , ∃ r1 ,…, rn∈R such that

y=∑r i x i. So such a thing is called a generating set and we are saying that there is a finite

generating set; so then we say M is finitely generated.
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So, for example, R noetherian, I and R ideal, then I is a finitely generated R module. Two, k

field, V is a k vector space, then V is finitely generated k module if and only if V has finite

dimension.
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Another  definition:  Say  that  M  is  finitely  presented;  sorry  before  this  definition,  just  a

remark.
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So, let G inside M be a generating set; then, there exist a surjective R linear map RG→M ,

where by RG we mean the free R module with basis G.

(Refer Slide Time: 26:24)

So, I did not define basis now, it will be in the exercises. So, immediately after this lecture;

we should also work out that part about the basis. So, in other words it is a direct sum of R

with some basis element that is indexed by G to M; such that ϕ (eg )=g.



So, the map is  eg here goes to g; g is an element inside M.  eg is just  a dummy element

indexed by the generating set. So, once you identify a generating set, then there is a map from

a free module of that rank to of that many copies of R to M.
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So M is finitely generated if and only if there exist a surjective map F→M  with F, a free

module of finite rank; that is a basis of finite size. Rank is the cardinality of the basis and if

you have a base of cardinality; if you have a basis of finite size, then it is called a free module

of finite rank or a finitely generated free module. And M is finitely generated precisely when

there is such a map.
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Definition: M is said to be finitely presented, if M is finitely generated and for a surjective

map F to M, where F free of finite rank. So, such a thing exist because it is finitely generated;

for a surjective map ϕ :F→M , kernel of phi is finitely generated. I should clarify, kernel of a

R linear map is an R module. I did not explicitly state this, I did not actually even define what

kernel is. So, let us actually do that now, so it is just with regard to the previous line.
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For an R linear map f :M→N; kernel of f which is the stuff {x∈M|f ( x )=0 } is an R module.



So, the observation that we would like to make and we will quickly see an example of that is

the following.

(Refer Slide Time: 31:29)

If M is finitely presented, then it can be written as the co kernel of a matrix. How? so let us

assume M is finitely presented. Then there is some F1 free module surjecting onto M. F1 is

free of finite rank. Finite rank just means like vector spaces, finite dimension; dimension is

not a word used in this context, it means something else; so, this is ϕ.
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Now, kernel of ϕ is again finitely generated. Therefore, we can take some F2 which maps like

this. Now, let us look at the these maps. So, this is a kernel sits inside here; so this is an

inclusion,  F2 is finite rank free; I mean both  F1 and  F2 are finite rank free. So, this one

surjects onto this kernel; kernel sits inside  F1 and the composite here; so we can take the

composite. So, let us call this map ψ and let us call this map i and let us call this map ϕ1.

So, ψ is surjective, i is injective and we can take the composite; so we get a map like that. So,

we get a map ϕ1 :F2→F1, this is R linear. So, you should check that this is R linear and so

these are free modules of finite rank.
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So, F1 has basis; let us say {e1,1 ,…, e1 , r1} this is the rank of F1. F2 has basis {e2,1 ,…, e2 , r2}, r2

is the rank of F2.
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And now we can write this expression the same way we do for vector spaces; express ϕ1 by

the matrix (aij )r1×r2. So this will be a r1×r2 matrix where we have ϕ (e2, j)=∑
i=1

r1

ai , je1 ,i; so this

describes the j-th column. So, this is one of the reasons; so for most of the rings that we will

work with most of the modules will be finitely presented. One of the advantage is that it can

be expressed in some finite data. So, what is co kernel? So, we will continue this discussion

in the next lecture, but let me just finish this; what is co kernel.
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Co kernel means, if f :M→N, R linear; then the co kernel of f is by definition 
N
ℑ f

. And the

point here is that M is F1modulo the kernel; because of this surjectivity and injectivity image

of ϕ1 is exactly the image of i; which is the kernel.

So, here what we should observe is that image of ϕ1 is image of i, which is equal to kernel of

this ϕ. Therefore M is isomorphic to the co kernel of this map. So there is some advantage in

working with these modules. So, we will continue our discussion about modules in the next

lecture.


