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Lecture – 14
Elimination

Today’s lecture is about Elimination. This is a topic that I mentioned in the previous lecture

in the context of finding solving equations in many variables polynomial equations in many

variables. So, what is elimination ok? So, this is the more general fancier version of what we

do in Gaussian elimination.
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So, let us go back to the example that we discussed earlier about Gaussian elimination. This

is for linear equations. Suppose this was the example that we had considered earlier, suppose

we have two equations X+Y +Z−1=0 and 2X+Z−3=0. So, we want to solve these things

common solutions and by cancelling out the leading term which is X in this case and also 2 X

in this case appropriately, we can get a third equation and this is we saw this last time in an

earlier lecture.

Y+
1
2
Z+
1
2
=0. Now, this is the leading term.
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In other words, so, ideal theoretically what are we saying we want to find. So, we want to

find V (X+Y+Z−1 ,2X+Z−3). So, when we do this we can find polynomials or in this case

linear polynomials which do not involve X.

So, for that is what we just said that we want to find V of this and on the way we found that

any solution that every point above satisfies this new equation Y+
1
2
Z+
1
2
=0. So, how do we

find this? So, this is the question.
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So how did we get this? So, this we got by eliminating, this is what Gaussian elimination did

eliminating X.

So, now how we do in the general situation for arbitrary polynomials?

So, now we ask question. So, how do we find such equations? In the linear case we know we

just do it by Gaussian elimination which is clearing of the X terms. So, how do we do it

properly in the higher degree case? So, I is an ideal of R which is a polynomial ring in some

finitely many variables X 1 through X n. That is I ⊆R=k [X 1 ,…, Xn ]

So, this is a field as usual and again no assumption that it is closed and S is the polynomial

ring in one fewer variable. So, in the earlier case the linear form the linear equation case it

was X,Y,Z and we leave out the first one and just ask for Y,Z that is what we are doing here.

And now we ask what is the ideal; just one observation this is really the contracted ideal.
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So, there is a S sitting inside R is a ring map and I intersect S both in a set theoretic.

So, when you say S its inside R is a ring map. So, S⊆R and I ⊆R and this would mean the

intersection of 2 subsets of R, this is also the contracted ideal of I. So, what is this ideal? So,

that is the question, how do we determine this?

So, let us think about what sort of elements belong to I contracted to S. ∀ g∈ I , g∈S if and

only if in lex (g )<X1. So, this is an observation that we would like to make that if g belongs to



S then its leading initial term will not involve an X 1 and that is precisely this condition that in

the lexicographic order the initial term of g is less than X 1.

So, we can use this. So, what we do is. So, we are going to describe a way to compute this.

So, in other words, we will have to use some Grobner basis arguments etc. and we will have

to give this thing some monomial order. So, give R the lexicographic order.
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So, theorem. Let G be a Grobner basis for I with respect to the lexicographic order then G

intersect S. So, now, this is just an intersectional vary both are subsets of R and we just take

an intersection is a Grobner basis of I contract it to S which is again in this case it is an

intersection. So, when we say Grobner basis of this thing with respect to what? With respect

to the lex order on S which is the first variable as X 2 now, then is X 3 and so on up to X n.

So, we will prove this in a minute it is not a very difficult proof. So, one observation that if

you compute the lexicographic order, the Grobner basis of I with respect to the lexicographic

order on R then we can compute this step by step eliminate  X 1, then eliminate  X 1 and  X 2

eliminate X 1 , X 2 , X 3 and so, on.



(Refer Slide Time: 09:31)

So, just a remark, ∀m≤ n, I ∩ k [Xm ,…, Xn ] has Grobner basis G∩k [Xm ,…, Xn ] with G as in

the theorem.  So, this  is  one can recursively eliminate  more and more variables  from the

beginning this using lex. Now that observation we can prove the theorem.
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So, note that  G⊆ I . So,  G∩S⊆ I ∩S. So, we want to show this is a generating set whose

initial terms give the initial terms of the elements of that ideal. So, let f ∈ I ∩ S. So, it is inside

I there exists a g∈G such that the initial term of g divides the initial term of f in R, but f is

inside S.
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Notice that f is inside S. So, X 1 does not divide the initial term of f. R is UFD which means

that X 1 is reducible X 1 does not divide the initial term of g. So, g is an element of S this now

we implies that g∈G. So, we started off with an element inside G here and now because of

this condition it is inside S. So, in other words this is a Grobner basis. So, around all these are

considered with respect to lex.

The only observation that if you compute the initial term of f, f ∈ S, if you compute the initial

term of f whether you think of it is an element of R or whether you think of it is an element of

S the initial term is the same. So, similarly for g. So, these are with respect to lex and so,

hence we see that this is the proof. So, G∩S is a Grobner basis of I ∩ S that is the another

proof.
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So, now let us look at one example in Macaulay. So, ignore that the first line, the Macaulay

code that we have input is this lines that are offset R equals this and we are defining it in

monomial order, then we are giving some ideal  ( x2+ y+z−1 , x+ y2+ z−1 , x+ y+ z2−1 ) and

then we ask for its Grobner basis then we ask for its generating set and remember in the

previous examples we have seen this as a matrix, but in order to make to pick out the things

that belong to the subring, we would like to just get it as a list and this is the you take entries

it will give a list of lists and out of which you want to flatten it to one list and so, this is what

we would get.

So, please look at the help pages of these commands flatten entries to make sure that you

understand what this is. So, now, here is the output. If you ask for flatten entries gens. So, we

ask for the ideal, ideal is this x square whatever we just put in and this is just some long list

which cannot print in one line. So, it just goes on. So, that is the first line.
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So, now, we would like to select the elements of G that lie in the ring in the ring where X is

not there. So, the last the tail of the variable set y and z that is eliminate x and also in the ring

Z
101Z

.
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So, 101 is a prime number and 
Z

101Z
 is a field and we would like to work with finite field at

least to illustrate the examples because the computations are significantly faster and that is

the only reason.

So, we would like to eliminate x first here and then  x and y here. So, again just ignore this

line which says in 2. So, this is just a header. So, just you can what you have to type into

Macaulay is this line. So, let us select is a command and what it does is. So, this is a function

g, so, this dash greater than denotes the maps to symbol in maths. So, it is a function which

we define on without labelling the function. So, it is just. So, this is what we would write as a

function. So, g gets mapped to this thing.

So, we are defining a function on g on this on the set on the list G and an element g of that set

gets mapped to. So, this is the function lead term of g is less than x. So, this is a Boolean

thing this either true or false and what select command does is it applies this function to every

element of this list and picks out the one for which the answer here is true. So, here it means

that pick out all the ones in which the lead term is lead term involves only y and z and so, it

write something out here it is just again very long.

So, here is one with pure power of z here is one with y2 and so, on. So, it gives us some list.

So, this is the elimination in eliminating x. If you ask for the second command the same thing

we ask for lead term less than y which means that the lead term the initial term can involve

only z.
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So, it eliminates everything other than z and here is what we get. So, in fact, there is a simpler

there is another command in.

So, this is just to illustrate how lex works. One does not always need to use lex one does not

always need to use this approach, there is a command called eliminate in Macaulay directly

and the advantage of that command is that depending on the ideal, it can try to make some

optimizations which on computing the Grobner basis or maybe skipping some steps etcetera.

So, there is a separate function and it is probably better to use that. So, let us just anyway

compare it compare that our computation with lex agrees with the output of the eliminate

command ok.
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So, here we are just using this the same I the one generated by those three polynomials. We

ask eliminate(x, I) and then we asked show us the generators. So, if you just ask eliminate

x,y, it only showed us two generators, but actually if you write out this code here, you will

say there are three things here 1, 2 and 3 at least. And when you actually run it, you can count

how many there are.

So, here we eliminate we only get two, but the reason is that it  has shown as a minimal

generating set and not the Grobner basis.
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So,  we can  ask for  its  Grobner  basis  gens  gb and it  shows us  those  three  polynomials.

However this is there in the lex order when we selected everything less than x this is what we

would have got and when you ask for eliminate.

So, now if you want to eliminate multiple variables you have to give them as a list and you

can look at the help pages of these commands to see how they have to be invoked.
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So, eliminate x, y the list comma I it eliminates x and y and gives us this output. So, that is

the example about a elimination and as an application of this elimination, we want to discuss

one problem that we have become familiar I mean one that we saw from the second lectures

itself, if finding kernels of ring maps.
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So, we will be able to do only a special case involving polynomial rings, but nonetheless it

should give as an idea on how we can actually compute it ok. So, what we want is, suppose

let  us  say R is  a  polynomial  ring  again  over  a  field  R=k [X1 ,…,X n ],  this  is  a  field  no

assumption on algebraic closure, S is a polynomial ring in some different set of m variables

S=k [Y 1 ,…,Y m] and ϕ is a map from R to S sending X i to gi keeping the elements of k fixed.

So, g1 ,…, gn are elements of S. We would like to know what is kernel of ϕ how would we

compute kernel of ϕ. If you ask Macaulay it would compute, but let us try to understand one

way of computing it using elimination.
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So, let us define a bigger ring T which is what the Ys and the Xs and we would like to think

of this as in two different ways, we can think of it as R adjoin the Ys and also as S adjoin the

Xs.

So, now let us define a ring homomorphism, let ~ϕ be the ring homomorphism from T to S in

which the  X i variables go to  gi’s as it would have happened in R and the  Y i variables are

themselves are not changed. So, this is a ring map. What is the kernel of this ring map? So,

before we go ask the kernel let us understand why we are interested in this.
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So, we have R here S this is again map ϕ then we have T here and a map ~ϕ.

Now, there is an inclusion map as a ring map. So, let us call this map  i for inclusion. So,

notice that if you take  i and then apply  ~ϕ this is same as  ϕ and kernel of  ϕ is kernel of  ~ϕ

contracted to R. So, that is the reason why we would like to study this map instead of that.

So, now, this gives us an idea that maybe there is some elimination involved inside here. So,

if you find the kernel of ~ϕ, then we can eliminate the Y variables and then we will just get

some ideal inside R.

So, let us try to understand what the kernel of ~ϕ.
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So, T is S adjoined the Xs and we have a map to S ~ϕ in which X i goes to gi and elements of S

are unchanged. So, it would be an exercise and this is something similar to that we did for in

the exercise,  it  is something that we did in the proof of a remark for Nullstellensatz that

kernel of ~ϕ is generated by the set X 1−g1 ,…, Xn−gn.

So, this one can prove it without much difficulty and so there is an easy description of this

kernel and then going and then we do an elimination remember in the X variables first we

will  not  eliminate  the  Ys.  So,  when  we order,  it  should  be  ordered  with  the  Ys  to  the

beginning and then the Xs in the lexicographic order and then we just apply this algorithm.
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So, now, let us try to do this. So, here we have a map from R to S, R is the polynomial ring in

two variable and S is the polynomial ring in one variable and we define a map x goes to t2

and y goes to t3 and this we have worked out earlier.
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Now, let us do it the way we had just described earlier, we put the y variables I mean the

variables of S first which is the these things and then the variables of the ring R, x and y and

then we just generate this ideal we just write down formally write down x−t2 and y−t 3 no

thought has to be applied depending on and then we just say eliminate t.
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So, if you use this command then you do not have to specify its lex order then Grobner basis

etc just use this command directly and it now says ideal (x3− y2) square here it says ideal of

R here it says ideal of T. I mean there is still some minor issue like this because elimination

in this situation elimination is done in T itself, but one can safely ignore this part and think of

it as an ideal of R. 

So, that is the end of this lecture on elimination. From now we will discuss a little bit more

abstract things and develop more things related to. So, we will start off with modules and

then proceed from there.


