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Welcome, this is lecture 13 in the series. We will look at the Application of Grobner basis to

describe Quotient Rings, and then use it as a way to look at to determine whether system of

polynomial equations have finitely many solutions, the solution that is finite. So, here is a

proposition which is sort of the one of the important reasons for studying, I mean among the

one of the original motivations for studying this. 
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We  are  continuing  with  the  same  discussion.  Throughout  R  is  a  polynomial  ring  in  n

variables, and this ¿ is a monomial order and I  is an ideal. So, let I  be an ideal; then, the set

{m monomial in  R∨m∉∈
¿

( I )}, that is the complement of the initial ideal of I in the set of

monomials is k-vector space basis of 
R
I

. 
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Just let us make sure we understand what this means. Note, R is a k-vector space. A basis for

R is the set of monomials. I is a k-vector subspace of R. Therefore, 
R
I

 is a k- quotient  vector

space.

Now, monomials need not form a basis for I, because I could be generated by non-monomial

polynomials. So, this may not have a basis of monomials. However, the quotient ring has a

basis  of  monomials  which  comes  precisely  from  the  complement  of  I.  So,  that  is  the

proposition. So, we will prove this. 
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So, you have to prove that a subset is a basis for a vector space. So, we have to prove two

things, we have to prove that it spans and it is linearly independent. So, let G be a Grobner

basis for I. 

Now, let us prove the first case: linear independence. Suppose, we have some ∑
finite

αimi=0,

mi∉∈(I ) for all i, and α i∈ k. So, a k  linear combination of elements in this potential set, say

let us say it is 0. So, this is 0 in 
R
I

.



 

So just when we write ∑α imi=0∈
R
I

 we mean the residue class inside 
R
I

, but here I mean

the actual monomial itself the same sum is inside I; which means that the initial term of the

sum is divisible by in¿g, for some g∈G.

Now, what is the initial term of this? These are monomials, these are distinct monomials,

there are no cancellation among them, the one that is the largest.
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If α i≠0 for some i, then there exists mi∉ in¿ I  divisible by in¿g, for some g∈G. But this is

not possible. 

Anything that is divisible by g by such terms will be inside here. So, this is a contradiction.

This contradiction is for this assumption.  So, therefore,  α i=0 for all  i,  which is what we

wanted to prove. This proof for linear independence.
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Now, we would like to prove that the set spans the vector space. So, let f ∈R, and apply the

division algorithm. Let r be equal to the remainder of f under division by G. Notice that f−r

is a sum of linear combinations of the G, so it is inside I.

So, in other words, f mod I=rmod I . But what is the property of r? r has a property that no

term of r is divisible by ¿(g), for any g∈G.
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So,  in  other  words  r  is  in  the  span  of  that  set  monomials,  so  we  can  write  it

r∈ Span {mmonomial∈R|m∉ I }. Therefore, it spans and hence the proof is done. So, this is

the property of this description of quotient rings and its relation to Grobner basis of I.

So, with this we can use this idea, result to prove the following theorem.

(Refer Slide Time: 10:05)

This is about finiteness of the solution set throughout. So, now we assume k algebraically

closed. We may not need to assume k algebraically closed, but since we did not describe how

to translate or what is the relation between arbitrary field and its algebraic closure when we

work in these thing, it is better to assume algebraically closed and have a clean statement

now. R=k [X 1 , X 2 ,…,X n ], I is an R-ideal, then the following are equivalent. 

One,  V ( I ) which is  the common zeroes of all  the polynomials  in I  is  a finite  set.  Two,

∀1≤i≤n,∃mi∈N such that X i
mi∈ in¿( I ).  So,  fix  any  monomial  order,  the  result  does  not

depend on the monomial order itself. Three, for any Grobner basis G of I, again with respect

to  the  given monomial  order  and for  all  the  same quantifier  for  each  variable  it  means,

∀1≤i≤n,∃mi∈N , gi∈Gsuch that∈(g i )=X i
mi.
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Statement four, the set {mmonomial∈R|m<∉∈( I ) } is finite. And five, the dimension as a k-

vector space of 
R
I

 is finite.

So, let us look at these statements just once more. So, we are trying to understand when

would the zero set of I be finite that is a first statement. Second statement says something

about some nice terms powers of variables inside the initial ideal. Third is just restatement of

two that in any Grobner basis there is a polynomial in which a power of a variable is the

initial term. And four is the complement of the initial ideal in the set of monomials and their

complement is finite. And five, dimension of this is as a k-vector space is finite.

So, in the proof let us finish off the ones that are that we already know. Let us look at 2 and 3.

2 says there is an X i
mi in the initial ideal which means that in every Grobner basis there is an

element in the basis whose leading term is  X i
mi. So, that says 2 implies 3, and if 3 is true,

clearly 2 is true because this initial term shows up there. So, 2, if and only if 3 is from the

definition of a global basis; so, this we will not reprove.

What about 4 and 5? So, that is the previous proposition. This set is a k-vector space basis for

this. So, this is finite if and only if this is finite dimensional. 

So, for if and only if 5 is the previous proposition. So, what we will prove now is 1 implies 2,

3 implies 4, and 5 implies 1. So, what we will show and that is enough 1 implies 2, 3 implies

4, and 5 implies 1. If you prove these statements everything will be done.
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So, let us prove 1 implies 2. So,  V ( I ) is a finite set. So, fix an i such that  1≤i≤n and let

A i⊂ k be the values of the i-th coordinate of the points in V ( I ). So, just project ¿ to the i-th

coordinate and just pick out those the image of that thing. So,  A i is a finite set. Define the

polynomial f i (X i )≔∏
a∈ Ai

(X i−a).
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Notice that  f i vanishes at everywhere inside I. Note that the i-th coordinate of any point in

V ( I ) will be from A i. So, it would vanish, so that  f i∈ I (V ( I ) )=√ I . This is the radical of I

that we proved.

So, what does that now mean? It means now that f i
ki∈ I  for sum k i. But what is f i

ki look like?

So, the initial term of  f i
ki is that is quickly. So, the degree of  f i is the cardinality of  A i and

¿ ( f i
ki )=X i

¿ A i∨ki∈∈( I ) and this is true for every I. So, this proves that 1 implies 2.
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We already observed 2 implies 3. Now, let us prove 3 implies 4. So, an arbitrary monomial

X 1
a1X 2

a2…X n
an∉ in¿(I ), that is for each i,  X i

mi divides is in the initial ideal is not in the initial

ideal if and only if the i-th exponent is divisible by mi then it is in the initial ideal because X i
mi

is in the initial ideal. 

So, this is true, if and only if 0≤ ai<mi for all i which now implies that the set {m∉∈( I )} is

finite. There are only finitely many exponents satisfying this condition.
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So,  now we  come  to  the  last  part  which  is  5  implies  1.  So  fix  some  i,  let  us  look  at

{1 , X i , X i
2 ,… }. So, consider the subset of monomials inside R. This give a linearly dependent

set in 
R
I

, because 
R
I

 is finite dimensional this is countable. So, if you take the images inside

R these are linearly independent, but if you take their images inside 
R
I

  then because 
R
I

  is

finite dimensional there must be a linear relation among them.

So, in other words there exists some f i (X i )∈k [X i] in one variable, such that f i (X i )∈ I . This is

true for every i.
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So, therefore,  I ⊇( f 1 (X 1) , f 2 (X 2) ,…, f n (X n)). Now, if some point in  k n has to satisfy all of

these  things,  the  first  coordinate  can  only  take  finitely  many  values  depending  on  this

condition, for the second coordinate and so on. 

So, if a∈V ( I ), let us say a=(a1 , a2 ,…,an), then f i (ai )=0 which means that a i has to come

out from a finite collection and therefore V ( I ) is a finite set. The point is that V of this ideal is

a finite set, therefore, any ideal containing it also will be a finite set.

So, this is the this is an useful application of the things that we discussed so far for this

problem about determining if there are finitely many solutions. 
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So, now let us look at these things in macaulay. So, again ignore this first line with some two

percentage in macaulay, it just says that we are running some macaulay code. So, we are

defining a polynomial ring. So, once at least in the earlier example we saw that if you switch

from G Lex to Lex the complexity of computing of Grobner basis goes up substantially. So, I

have used small field to to illustrate this calculation.

So, here is polynomial ring with G Lex order. Actually, it is the same polynomials that we

chose earlier. We compute the Grobner basis.
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So, this is again, the offset line is the code that is run and the line that comes from the left it

says  the  full  width  line  is  the  output.  So,  it  computes  the  (Refer  Time:  24:30)  for  the

generators of the Grobner basis. So, it gave this and this one. 

And we can quickly check that initializer contains powers of the variables. I mean we can do

that just by directly looking at here itself initial term is y3, initial term is x2, initial term is z6.

So, all variables have their powers on the initial ideal which we see just by looking at here

itself. So, this tells us that this V ( I ) is finite in this case. 

Of course,  we will  not  probably  ask for  it  over  
Z
11

,  but  we can  only discuss  it  over  its

algebraic  closure,  but  that  is  ok.  Computation  is  done in  over  
Z
11

 itself.  So,  therefore,  I

contains polynomials  f (x), polynomial that involves just  x;  g( y), this is a polynomial that

involves just y  and h (z) this is a polynomial that involves only z.

So, in principle to find the solutions we could just solve these one variable equations and

then. So, we get some finite set and in that finite set we can explicitly check whether which of

these satisfy these polynomials. Remember, these are mixed there is a y, x term there is all

variables here, there is a mixturex2, y2 term. 

So, these do not fit this description. But if we can find the these 3 polynomial then we can

just find the superset from which the solutions will come, superset itself will be finite and

then one can then just check against each one of these things which of them are actually

solutions and which of them are not. So, this is theoretically possible. But it is somewhat

tedious because it is not easy to identify such single variable polynomials. And we will see

this in the next lecture which has to do with something about elimination.

So, we will do this. So, elimination will be discussed in the next lecture. But the unfortunate

part is we have to use Lex instead of G Lex and it means that the computation can get really

big as we saw in the last lecture; so, that is what we are doing here. We just do we just

change the order to Lex, same ideal.
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And we asked for its; so we have seen similar example suddenly the in much higher degree

and much higher large enough. I mean more elements in the Grobner basis. So, this is again

similar example. 

We compute the Grobner basis of I and then we ask for the leading term. So, it gives this

output. So, this is the initial ideal already. I mean we see that there are 7 terms inside here and

there is one of degree 79.

(Refer Slide Time: 27:35)



 

So, let  us try to understand what  it  says.  So, there is  a polynomial  f 3  in the ideal  with

¿ ( f 3 )=z79. But if you have a polynomial in Lex order whose initial term is z79 or power of z

then it cannot involve y and x. So, it must be a polynomial in z alone. There is an f 2 with

initial term y 4. So, it must be a polynomial with in just y and z. 

So, we first can solve for this one; then for each values of the solution c1 ,…, c79. So, there

might be repetitions, These are algorithmic aspects that one should worry about one has to

actually compute, but at least let us have an idea how it can be done.

So, for each i we can substitute c i inside here and solve for f 2( y ,c i). So, this will give us the

variety  V(f 2 , f 3 ¿. So, instead of finding the single variable polynomials we are doing like

Gaussian elimination. We first solve for the last variable and then the next one and then the

next one. 

So, for each { (b ,c ) }∈V ( f 2 , f 3) find zeros of g(x , b , c) as g takes the values in the generators. 
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So, here is just little bit more introduction to macaulay. So, how would we know, how would

be pick out among the elements of the Grobner basis? How would be pick out those which

involve only z or those which involve only y and z? I mean how do we ask macaulay to pick

it out for us? 



 

Of course, if it is written we can glance at it and then hopefully we can pick it, but that is a

little tedious. So, the observation is that f is a polynomial in z if and only if ¿( f ) is a power of

z and that is true if and only if ¿ ( f )< y.
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So, that is what we have asked here. So, this is something called select command.
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And the exercise is open a macaulay session and read the select command help for it and

understand how it is done. That is the exercise. So, I ask, so it is probably clear from the

context.

Consider the function which takes the Boolean value m. So, this is a monomial, I am already

using that inside here. So, ¿(m)< y. But ¿(m) is the largest, so every term is less than y. 

So, to be correct I should have written lead term of m is less than y. So, I am asking I am

giving a function from this set, so this is the Grobner basis, from this set I am asking consider

function m goes to or m maps to the Boolean value true or false depending on leading term of

m is less than y. So, this command picks out all the elements in G. So, G itself is a matrix, so

in order to get it as a list we have to do these commands. So, please look at its help.

Apply this Boolean function, Boolean valued function and pick out the ones that are true for

which the output is true that is what select us. And similarly, here I pick the ones whose

leading term is strictly less than x which means the ones that involve y and z only. And then,

it will give us two lists and then we can programmatically try to solve them. Of course, we

have not discussed any we have to solve single variable, very high degree polynomials that

also  one has  to  be able  to  solve.  I  mean if  everyone like  this  one there  is  just  a  single

polynomial.  How do we find solutions  of this  is  a different  problem which we have not

discussed. 

So, this is the end of this section about finiteness of solution set. And in the next lecture, we

will use elimination we will discuss elimination of variables as we already saw a little bit

here. 


