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This is the 12th lecture in the series and in this lecture we will prove Buchberger theorem.
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So,  this  was  a  theorem  that  we  mentioned  in  the  last  lecture.  So,  I  is  an  ideal  in  the

polynomial ring in n variables over a field k, no assumption on k other than that it is a field

and G is a generating set, G={g1 , g2 ,…, gm }.
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Then G is a Grobner basis precisely when for every pair i and j the remainder of  S(g i , g j)

when we divide this by elements of G in any order of elements of G the remainder is 0. So,

this is a characterization of something being a Grobner basis for I.

So, now let us prove this statement. So, one direction is more straightforward than the other, I

mean in fact, quite straightforward so this is the direction. So, assume that G is a Grobner

basis. 
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Let i be different from j, and let f=S (gi , g j). Recall from the definition of S(g i , g j) first you

multiply gi by some monomial, then you multiply g j by some monomial, and then you take

the difference to remove the leading term. So this is inside I . But if f  is inside I , we divide f

by elements of G, because G is a Grobner basis.

We know that the remainder of G will not depend on the order and which we divide or it is

completely independent of what the coefficients of the g’s are, the remainder is independent.

And f  is inside I  means that the remainder of this is the characterization of f  being inside I .

So, this is the proof from one direction. 

It  is  just  an old  result  about  which  we proved many lectures  ago that  if  something is  a

Grobner basis, then the remainder is a well-defined quantity irrespective of the order etc and

an element is inside I  precisely when the remainder is zero. So, this is the easy direction of

that theorem. 

Now, in the other direction, one needs to prove that it is a Grobner basis. So, we have to

prove that for any f ,  ¿ f  is divisible by ¿ g j for some j that is what it makes a Grobner basis.
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So, now by way of contradiction,  assume that G is not a Grobner basis. Therefore, there

exists some f ∈ I  nonzero such that ¿( f ) is not in the ideal generated by ¿(g¿¿ i)¿ for 1≤i≤m

. So the initial terms of gi do not generate the initial ideal that is what we are assuming. So,

there is an f  with this property. Now, we are going to make some choice about f , and we will

prove that with some property there is a contradiction.

Among all such  f , and all such expressions  f=∑
i=1

m

hi gi. Remember  f  is in  I  and the set  gi

generates the ideal that is the hypothesis, but it is not a Grobner basis. So, f  can be written in

terms of the gi’s, but ¿( f ) cannot be written in terms of the ¿(g i)’s that is this hypothesis.
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So, among all such f  and all such thing choose one such that max {∈h1g1 ,∈h2 g2 ,…,∈hmgm}

is smallest, call this value μ. Let us go back and say what this means, what is being said. 

So, there is some f  with this property.  f  itself is can be written like this. So, for any such

expression compute this maximum of the initial terms of the individual terms in the sum hi g i,

choose one that is smallest, and call that smallest value  μ, so that is one thing. Now, it is

possible that many of the i such that ¿h ig i=μ.
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So, among all  such expressions as above choose the one in which the cardinality  the set

{i|∈hi gi=μ} is minimum. So, the idea of the proof would be given such an  f  and such an

expression  which also determines  μ and this number, either this set becomes smaller or m

becomes smaller. Either way we have contradict to the choices and that would be the end of

the proof. 

So, what is the relation between the maximum of ¿hig i and f ? So, the sum of hi g i gives f . So,

the maximum here is less than or equal to the maximum of the initial term here is less than or

equal to the maximum of the initial terms of the sum. There may be cancellations, but the

initial term of this cannot be greater than the initial term of every one of these things. So, that

maximum is μ. So, ¿ f  is less than or equal to μ that is sort of by definition. But we can say

more ¿ f  is less than or equal to μ that initial term here is μ.
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So ¿ f  is less than or equal to that, but we can say more because μ is divisible by ¿ gi for some

i, but ¿ f  is not. The assumption was ¿ f  is not in the initial ideal. So, it is not divisible by the

initial  terms of the elements of the generator of those  gi.  So, this now implies that  ¿ f  is

strictly smaller than μ. 
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So,  now,  let  us  observe  that  μ occurs  at  least  twice  in  the  collection

{∈h1 g1 ,∈h2 g2 ,…,∈hmgm }. Because if it appear only once, let us say it appear only for ¿h1g1

. So,  ¿h1 g1=μ everything else here is smaller which means the sum will have initial term

¿h1 g1 which is μ, but that is the initial term of f  also, but that we know is not true since initial

term of the ∑ h ig i which is f , remember that ¿ f <μ.

So, the initial terms of at least two of these things should get cancelled before we get f . So,

let us make this observation. So, without loss of generality, we can rearrange these terms and

assume that h1 g1 and h1 g1 have the same initial term μ.
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So, note that the initial term of g1 divides μ, the initial term of the product of two polynomials

is the product of their initial terms. So, the initial term of g1 divides μ, similarly initial term of

g2 divides μ, hence lcm of the initial terms divides μ.

So, we can write this, so let n be a monomial, such that n ∙ lcm(¿ g1¿ ,∈g2)=μ ¿. Now we need

to study the S pair. We just need to introduce some notation because you are keep using this

thing. 

So,  let  L1=lcm
(¿ g1¿ ,∈g2)

¿ g1
¿;  similarly  L2=lcm

(¿ g1¿ ,∈g2)

¿ g2
¿.  So,  then  notice  that

S (g1 , g2 )=L1g1−L2 g2. 
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Now,  let  us  look  at  various  of  initial  terms  now.  Then

n∙∈(S (g1¿ , g2))<n ∙lcm(¿ g1¿,∈g2)=μ¿¿.

So that is just this expression was constructed precisely to cancel their respective leading

terms both of which are have this value and this was μ. So, we would need to use this later.

So, notice that the S pair is an element in the ideal. So, it can be written as S (g1 , g2 )=∑ pi g i.

Its initial term is strictly less than μ. Now μ was the among all such elements whose initial

term is not inside the ideal generated by the initial terms of the gi, choose an expression of

this form such that this is smallest and its value is μ, but now we have an expression like this

whose initial term is strictly less than μ.

By  assumption  on  μ,  we  see  that  the

¿ S (g1¿, g2)=max ¿∈( p1¿g1) ,∈( p2¿g2) ,…,∈(pm¿gm)}¿¿ ¿¿¿. If this were not the max, then

this expression would also satisfy the condition which was used to pick out μ, but then the

initial term of this is strictly less than μ that would have contradict to the choice of μ. So, one

can choose with this property.
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So, now with this, we can rewrite f as f=∑ hi gi+n ∙ S (g1 , g2 )−n∑ pi gi, that is just saying

we have just added something and subtracted the same thing. So, it is not changing the value

of n.

Now, in this expression, notice that the maximum of the initial term, so we can rewrite like

this. So, in this expression, there is a g1 and g2 appearing in the definition of S then there is

something here. So, in this expression, it does not change the number of times μ occurs as the

initial term of these terms inside here nor does it affect. The fact that μ is the maximum of the

initial terms on the right side.

So, therefore, let me just summarize that thing. So, this does not affect the maximality of μ or

number of its occurrences in this collection.  So, we have not removed any of the leading

terms  for  which  it  is  μ.  So,  now,  using  this  we  can  rewrite  f  now  as

f=g1 (h1+n L1−n P1)+g2 (h2−n L2−n P2)+∑
i=3

m

(hi−n Pi ) gi.
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Now, consider ¿((h2−n L2−n P2)g2), this is the coefficient of g2 in this new expression.

So, ¿h2 g2=μ and ¿ (n g2P2 )<μ. And the important point is ¿ (n L2g2)=n
lcm (¿g1 ,∈g2 )

¿ g2
∈g2=μ

.
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So, in other words the conclusion for us is that  ¿ (h2−n L2−n P2 )g2<μ.  Remember  μ was

chosen  with  certain  properties,  and  this  contradicts  one  of  those  law.  Among  such

expressions the number of times in which this occurs is minimum.

So, previously we had assumed that  h1 g1 , h2g2 and possibly other things all had the same

initial  term  μ out of which if  we have removed one term which is we have changed the

coefficient of g2, so that the with the new h2, ¿¿new h2 ¿ times g2 is strictly less than μ. So,

this contradicts the choices made earlier.

And hence therefore, the conclusion is there, and all of this came by assuming that there is an

f. So, conclusion is that  ¿ ( f )∈( {¿ (g )|g∈G }) in other words G is a Grobner basis for I. So,

that is the end of proof. 
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So, now I just want to show one example. So,  these lines which follow a two percentage sign

macaulay 2 an offset from the left like this like this, this is the macaulay code that we enter

and this is the output of various lines that are just sequentially given.

So, in the first line, we just defined a ring and then next line we defined an ideal. And notice

the new way in which we have defined the ideals. So, we have just written like a string, we

have written x 5+ y3+ z 2−1. It will understand is as x5+ y3+ z2−1. It is a convenient way of

entering polynomials into macaulay2 if the variables do not have subscripts.



The variables have subscripts, we cannot do it. We have to do it the way we were doing it till

now like x so caret 5 etc. So, this is a convenient way of doing that. So, these three lines are

corresponding out. So, we ask to compute the Grobner basis of I. So, this is defined in the

GLex order. And we just call that thing gbI, this is just a name. This is the thing and it says it

is a Grobner basis, the status of it is done and S-pairs encountered up to degree 5. So, it kept

computing, and it went up to some large degree.
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And let us look at the elements of the Grobner basis. So, we continue the calculation. So, this

is asking for the generators of the Grobner basis meaning the actual elements of the Grobner

basis. So, it output something y3+x2+ z−1, which is one of the generators. Remember this is

GLex so that is the leading term. 

So, the complexity of computing a Grobner basis depends heavily on the on the monomial

order  that  we  choose.  So,  we  just  repeat  the  same  thing.  So,  here  we  just  did  we  got

something. So, now, we ask same thing we just redo all the calculations, but now the ring is

defined with monomial order Lex and the same ideal,  and we asked to compute Grobner

basis. 

Suddenly we notice that S-pairs encountered up to degree 86, there previously it was just 5

ok. So, a substantial difference in the complexity between Lex and GLex.
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So now we ask to show the output and it is so big. So, here this is degree 79 it starts with;

z79 , z78 , z77 so on. So, with some very long there are seven generators first of all in that thing,

and it is just a very long. 

So, this is the end of this lecture. In the next lecture, we will look at quotient rings and how

Grobner basis comes in handy to study them. And we will also using the same idea we will

also come up with the criterion to decide if some system of polynomial equations has finitely

many solutions.


