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So, this is lecture 11 and here we look at another version of Nullstellensatz, this is the

more classical version. So, this is; so, this is a classical version of Nullstellensatz and

proved by Hilbert.  So,so again the notation is  ,  k algebraically  closed.

Then,  . 

So,  let  us  prove  this.  Again,  we  will  prove  it  assuming  the  versions  the  equivalent

versions that we proved in the last lecture I mean, assuming the 2 versions that we saw in

the last lecture which we proved were equivalent to each other, but we did not prove

either that either of them were true. So, assuming that statement we will prove this and as

I mentioned we will  prove the version 2, the description of maximal  ideals after  we

develop some more algebra.
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So, let proof let , so let me just remind you what this is given any variety we

can look at so, given any given any I we can look at its variety and then we can ask what

are all the polynomials which vanish on that V of I, so, maybe I should just to remind

ourselves we should say what this is. 

So, this is   and we want to show that,  so we want to

show that there exist an m such that  . So,  the proof of the statement is clever

trick done as follows.
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So,  let   be  a  generating  set  of  I.   yes  what  we  want  to  show  is  that

 is in this ideal, the ideal generated by these elements. 

So, we define a new ring  in that we define a new ideal in S defined by

 the generators of I and a new element which is  . So, f is a polynomial

just in the X’s. So, we are generate writing a polynomial like this ok. 
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So, now the observation that we want to make is that V (J) is empty. So, let us look at

why that is the case? So, you this you will you should write out the details it is not very

difficult. So, i if b is an n + 1 tuple which is in V(J), then these polynomials vanish by

definition of f vanishes, but then 1- Yf cannot vanish so, that is . So, check please check

this detail. 

So, V (J) is empty which means that J = S.  So,  this is the what we call the “Weak”

Nullstellensatz. So, in other words . So, we can write 1 in terms of these elements

ok.  Therefore,  there  exist   and  some  such  that,

 let us just say 1 is an ideal generated by  and 1 +

Yf.

The coefficients have to come from s. So, now let us we do so this is all part of the trick.
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So, the next is we consider a ring map. So, there exist a ring map which goes from S to

some large ring we can make it more precise after we develop some things, but it is not

relevant  for  the  proof.  The  ring  that  we  will  consider  is  the  rational  function  field



So, there exist a ring map, in which k elements of k go to the same elements here 

also go to goes to   and  goes to   ok. So, now let us apply so, let us call this

thing star apply and let us call this map  . Let us apply phi to star this equation here.
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So,  is a ring homeomorphism    involve only the X’s and  is map to

’s. So, that is just . But, on the other hand what is   goes?  is a polynomial

in n +1 variables; the X’s and Y, Y becomes 1 / f ,   is unchanged and so this is the

first term the first part. 

So, these terms this is what it becomes and S goes to whatever it is 1 – Yf  becomes 0,

that is exactly why this is written like this plus 0. So, this is because  . That

is the. 

So, now, we got an expression about 1 not involving polynomials, but one also needs to

allow for rational functions which have an f in the denominator. this is not exactly an

expression in the ring R, but it is an expression in the rational function field in the same

variables,  the only observation you are to make is the denominator will only involve

powers of f it will not involve other polynomials .
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So, because of this we can clear denominators. So, what does   will look

like some polynomial some , so, when we write this out and then in the

expression of the polynomial clear denominators and then you will get some .

So, that gives us for some ;  and ,  is just a polynomial. So, we can write

it like this. So, now, multiply by a large n power of a multiply by   for some for

sufficiently large N that would clear all the denominators of which have f’s the powers of

f in the denominator .

So, this is in the ideal generated by  which is I , so this is the proof. So, this is

just its just a clever trick so, what it does is, it passes to a larger ring and where after a

substitution we can introduce f’s in the denominator and then clear the denominators one

would get an expression like this. So, this is what we wanted to prove. 

So, based on this. So, the so from what we have seen so far, it is now sort of clear that,

the radical of an ideal is an important part important object associated to an ideal. So, we

can ask so we saw in the last lecture, how to test for memberships in ideals? So, now, we



can ask whether  we can testified  membership  in  ideals  and so,  this  is  called  radical

membership test.
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Notice that,  , if and only if  this is what we just proved that radical

of I is equal to this . So, if f is in radical of I then, there is a point if f is in radical I then,

now let us consider so,   .   same notation as in the

theorem. Now, if  f belongs to this equivalently if f belongs to this, this ideal would be

the unit ideal. 

If f does not vanish at some point where, the  is vanish then this has a solution ok. So,

let us check this let me write down what I just said. So, if f vanishes everywhere where

the  is vanish then  f is in the radical. So, we can write from the previous theorem that

f is in the radical implies that   . So,  if you substitute a point

where the  is vanish, then f will also vanish and hence it does this does not have any

solution.

So, this means that J is the unit ideal. Let us think about the converse, if J is the unit ideal

then, let us do it the other way around. 
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 let us suppose f is not in the radical, this implies that there exists some   

where,  ; this is where the other direction of the every f is not in the radical

means . So, there is such a point , so we get this.

And, from this what can we conclude? If you substitute a  to these polynomials these

things vanish so that is . And, f does not vanish, then appropriately you can choose a Y

such that, 1 - f Y vanishes. So, then set  then 1 - Yf  vanishes, I mean this value

of Y vanishes at  . 

And,  this  is  well  defined  because  it  is  nonzero.  So,  in  other  words  .  So,  the

question whether the question whether f is inside the radical of I is precisely determined

by whether J is S or not and then we know that the test therefore, the test is f is in the

radical of I, if and only if 1 is in the  Grobner basis of  J in some order. 

Notice that, in these discussions we do not need to decide if the discussion does not have

an underlying one need not worry about an underlying order, but to use this theorem we

once we have to set an order compute the Grobner basis in any order not some, in any

order in any order in any monomial order.
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So,  this is the radical membership test , f is inside radical of I is same thing as J being

equal to S which is same thing as one being inside J and one can immediately write this

in terms of a Grobner basis . 

So, now we want to sort of study some more about Grobner basis. And, in fact how do

we compute  a  Grobner  basis  given  a  generating  set.  So,  typically  when we write  a

program it would be you one would write down the generating set and then one would

need to know the Grobner basis and so this is; so this is called Buchberger algorithm.
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So, I will quickly discuss 2 examples of this. Although, we never learned it as examples

of this and the Buchberger algorithm cleverly puts these things together and proceeds.

So, the first example is  Gaussian elimination of solving linear equations. So, let us say

we have 2 polynomials X +Y + Z = 1; so I will write it as X+ Y + Z- 1= 0.

And, let us mark the leading terms well, we do not know what leading times when you

do Gaussian elimination, but we knew we get rid of the X and then and so on. We write

it in a matrix and do row reduction, but I am just writing it writing the same thing in

polynomials just to see that this is what we were doing. Let us say the other polynomial

is 2X+ Z- 3 =0, whose leading term is this.

So, we would like to simplify these leading terms just for convenience we would like to

make them  all 1.
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So, let us rewrite this as as  , and the leading term does not change. So,

now  these  2  the  first  and  the  third  equation  have  the  same  leading  term  take  the

difference. So, that when you take the difference of 1st and 3rd.

So, that would give us , for which this is the leading term ok. So, now if

you go back how this was done in matrices we would say there are 2 pivot variables X

and Y different ones and this is all that Gaussian elimination can do. So, we will now



solve  for  Y,  we will  set  arbitrary  values  to  Z and solve  for  Y then together  in  this

equation and then we will go back to this equation and solve for X. 

So, that is how Gaussian elimination or we could use these 2 equations, give arbitrary

values to Z and then solve for Y from here and solve for X from there. So, this is what

we did in Gaussian elimination.
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Now, example 2 is polynomials in one variable. So, earlier we looked I mean the linear

things many variables, but linear equations now polynomials, but in one variable. 

So, let us take one some example let us say that,  and , we want

to know if they have a common 0. Does there exist a point a in k such that, f (a)= 0  g

( a). That is the that is what we would like to answer and so, we would do division

algorithm here. So, we would write division algorithm as . 

So, the first round of; first round of division algorithm gives this remainder. So, then if f

(a)= 0   and  g ( a)=0, then for this also it would be 0. So, let us call this thing h( x). So, f

(a)= 0   and  g ( a)=0 of a would imply that, h (a )=0. Now, we will do between h and g. 
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And, this is a little complicated expressions, let me just copy what I have already worked

. So, this is what we have. 

So, now so this is g. So, if g(a)= 0   and  h ( a)=0, then  is 0. This is a contradiction.

So, what does that say it says that the system is inconsistent. We would like so what

Buchberger  algorithm  does  is  to  put  these  ideas  together  and  do  for  multivariate

polynomials in of arbitrary degree not linear polynomials. 

So, we need an important notion and how these things are canceled so, it has to do with

so let  us  look over  here how were the  leading terms  canceled  the  coefficients  were

adjusted and then subtract. Here, how was it done? Well,  the the leading terms were

adjusted by multiplying by monomials. 

So, here it was some x time’s g and then we cancel the leading term. And here so I

suppress 2 steps it  was really   and then some leftover  was there which was

adjusted through this. So, I suppress 2 steps inside here, but even here this can be broken

into two steps in which monomials were multiplying the devisor and then canceling with

the polynomial from which we were dividing. 



So, we would like to form I mean capture this thing properly. So, this is an important

definition in this study of Grobner basis. 
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So hereafter  no assumption on k it is a field, but no assumption that it is

algebraically closed or any field is fine. Definition let f and g be 2 polynomials in R non-

zero. The S-pair so I must apologize I do not know why it is called a pair? It is a single

sorry let me finish that, S-pair or sometimes called I mean I think also called polynomial

of f and g is. 

There is some monomial order, we are discussing Grobner basis so, there is some order

that is be used that is be a yes.
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So, let me write it here the we take the . 

Now, if we notice both of these things have the same initial term which is the lcm ok,

which is why precisely we took the lcm divided by initial term multiplied by f would just

make first of all this is a monomial and you multiply that monomial to f the initial term

will get multiplied by this monomial. So, they both have the same leading term and the

difference is what is called the it is called written S(f, g) .

So, this is sometimes called S-pair, although it is not clear why it is called a pair, but

many books and Macaulay also uses S-pair and sometimes some books refer to it as S-

polynomial. So, we will interchangeably use both (Refer Time: 28:23) yeah sorry this is

this is what so, this is what S-pair is. 

So, this is the key idea behind canceling leading terms multiply appropriately and then

subtract  we did this  in  many of the examples  yesterday not  yesterday in  one of the

previous lectures sorry not in the previous lecture. So, now so this is the key result of

Buchberger which we will prove in the next lecture. So, for now we will just state it and

use it as you describe an algorithm. 
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Let   be a generating set. Then G is a Grobner basis of I, if and only if the

following condition holds.
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So, this is a sorry I should have said it is a finite I let me just sorry let me just fix this

thing  a  little  bit  let  me  actually  label  it  is  a  finite  set  and  let  me  write  them  as

 for all if and only if for all pairs i different from j. So, now we can apply



the division algorithm on the S we can first compute   we can apply the division

algorithm by elements of G it in any order we want.

So, the remainder of sorry let me just it is badly positioned we are here write it here for

all i different from j and the remainder of   the  we take the we appropriately

multiply   and  take  the  difference  to  cancel  the  leading  term so,  we take  this.

the remainder of this for division by G in any order in any order of elements of

G is 0. 

So, we can apply the division algorithm and run the division algorithm on this remainder

by elements of g in some order and it does not matter which order you choose, if the

remainder is 0, then this is true for every pairs i and j then G is a Grobner basis. 

So, this is what sorry this is slightly more, longer to write than actually to say what it is.

We take S for S-pairs for arbitrary i j; i different from j and then we just run the division

algorithm by the elements of G in some order independent of the order the remainder

should be 0.
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So, we will quickly describe the Buchberger algorithm to compute Grobner basis which

is based on that theorem. So, what is given some  and what we want is



given a monomial order > symbol. Want a Grobner basis of the ideal of generated by a

.
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 So, start with G as the set .
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And, we repeatedly asked the following do the following computation. For f different

from g  inside  G both  of  them inside  G compute  the  remainder  of  S(f,  g)   call  the



remainder h. If h is 0, nothing could be done this step just do for another pair . So, repeat

for another pair.

And, if h is non-zero replace G by we throw in h also into the collection. And, now again

do this and stop when the remainder is 0 for every pair remainder division by a compute

the remainder of S(f, g) sorry I should have said this here for division by G. So, compute

the remainder for 1 and then we just check. 

So, the remainder will have terms none of which was divisible by in G in of an element

inside the group inside the set G. So, then throw that if it is non-zero then throw that also

and this enlarge is G, if it is 0 there is nothing to do repeat this at some stage this will

stop. 
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So, why this will stop, because it gives an ascending chain. As you add more and more

elements to G, the ideal generated by G goes up a little bit; but eventually it has to stop. 

So, this  is  the algorithm and this  is  the most basic elementary algorithm to compute

Grobner basis many of the programs have various improvements over these things; we

will not discuss those things we just want to have one conceptual understanding of how

Grobner basis is computed ok. So, we will prove the theorem this theorem in the next

lecture. 



Which is  that  this  is  the crucial  property of Grobner basis that a generating set  as a

Grobner basis precisely, when the S polynomial between pairs reduced to 0, when you

divide by elements of G. 


