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This is the 10th lecture in this course on Computational Commutative Algebra. So, now, so in

this lecture we look at Versions of Nullstellensatz.
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So, recall, what we call the weak Nullstellensatz. This, so  throughout this lecture again sorry

for saying this again; k is a field and R is a polynomial ring in some finitely many variables

over k and I is an ideal of R.

So, with that notation, assume k is algebraically closed. Then V ( I ) =∅  if and only if I = R .

So, this is one version of the Nullstellensatz. 

So, we will do another version.  
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So, let us write down another version. So, I will just abbreviate as NS for Nullstellensatz

version 2. So, this might look completely unrelated to the earlier version, but we will see  that

there is some connection. Let k be an algebraically closed field. 

Let  m be a maximal ideal of R=k [ x1 ,…, xn ]; then there exists a point (a1 ,…, an )∈k n , such

that m=( x1−a1 ,…, xn−an ).  So, let us think about this ideal for a minute. W e will prove that

the weak Nullstellensatz that we define here that, we recall here something about the variety

of an ideal be empty is equivalent to the statement; although the way it is written, they look

very different.

So, let us try to understand this ideal m  here.
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Remark:  let  k  be  any  field,  not  necessarily  algebraically  closed,  R=k [ x1 ,…, xn ]and   let

(a1 ,…, an )∈k n  . Then ( x1−a1 ,…, xn−an)is a maximal ideal . I will explain it in a minute.

Let us go back to the statement of the theorem, in the theorem it says that every maximal

ideal looks like this; here we are say over an algebraically close field, here we are saying that

over any field, this is a maximal ideal. And why is that so?
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a
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So, let us understand why? So, if we want to show that something is a maximal ideal, we can

just show that it is a kernel of a map to a field, a surjective map onto a field; in other words

the ring modulo of that ideal is a field. 

So, let us say a denotes (a1 ,…,an ) and let eva: R →k where f(x) → f(a) and x i→ai . So, this is

a ring homomorphism. Check!   x i−ai ∈ Ker (eva ) for all i, So, that is one observation,

(Refer Slide Time: 07:22)

And  ∀ α∈ k⊆R , eva (α )=α . So ,e va is surjective .Ker (eva ) isamaximal ideal ..  And  what  we

will show is that, it is the ideal generated by these linear polynomials.
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So, claim  :Ker eva=(x1−a1 ,…, xn−an ) .  So, now, let us ask, why this is true? . We already

observed that this inclusion  ⊇is true; that each one of them is in the kernel, so the ideal

generated by that by them is in the kernel. 

So, now, what we want to prove is the other way around. So, f (x1 ,... ,xn )∈Ker (ev a . )

f = ∑
i=0

d

f i ( xi , . . . , xn− 1) xn
i .
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Now, consider f (x1 ,... ,xn−1 ,an)=∑
i=0

d

f i ( x i , . . . , xn−1 )an
i

. let us go back, this is just expression of f; now we are just evaluating it here. So, this is, if

you take the difference.

So, this is the polynomial  f (x1 ,... ,xn )− f (x1 ,... ,xn−1 ,an)=∑
i=0

d

f i ( x i , . . . , xn−1 ) (xn
I−an

i
) . ; but this

term is divisible by an
i, this is divisible by xn−an. Therefore, this element is inside the ideal

generated by xn−an and we can repeat this. Now evaluate this polynomial.

So, let me just do it once one more step  f (x1 ,... ,xn−1 ,an)−f ( x1 , ... , xn−1 , an−1 , an )∈ ( xn−an ). .
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So,  therefore,  so  repeat;  so  therefore,  we  will  get  that

f (x1 ,... ,xn )− f (x1 ,... ,xn−1 ,an−1 , an )∈ ( xn−1−an− 1 , xn−an )

. And now repeat this to conclude that, f (x1 ,... ,xn )− f (a )∈ ( x1−a1 , . . . , xn−an ).

But notice that f (a )=0; this is the thing since f (x1 ,... ,xn )∈Ker (ev a . ), . So, that proves that :

Ker eva⊆ ( x1−a1 ,…, xn−an)  and the hence it is equality here.



So,  this is the this is the remark that,   over any field ideal such as this are maximal ideals.

The content of the version 2 of the Nullstellensatz is that, over an algebraically closed field

every maximal ideal looks like this, ok. And let us just make one more remark.
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Another remark, if k is algebraically closed; then every maximal ideal of, maximal ideal of

k[x] is of the form (x - a) for some a∈k .

So, what the Nullstellensatz, the version 2 of the Nullstellensatz is does is to generalize this

statement to larger number of variables. And this is prove how, how does one prove this?

Well, if a maximal ideal, then it has to be generated by any reducible polynomial; and if it is

any polynomial in over k splits into linear factors, so a reducible polynomials are precisely

the linear polynomials and that is.

 So, any proof of any version of the Nullstellensatz requires considerable amount of work,

and for this course we will  postpone the proof to a later stage, where we will prove this

version 2 that we just stated; that will come after we discuss integral extensions and Noether

Normalization Lemma. One can directly prove the weak Nullstellensatz using elimination

and resultants; there are other proofs of stronger statements from which these two will follow.

So, what we will do today now is to prove that the 2 versions that we stated; what we call the

weak Nullstellensatz and which is about the emptiness of V of I. And the version 2 which is

about maximal ideals they are equivalent to each other; that we will see now. 



The proof of either, proof of version 2 will be given later, so that would establish the; only

then we will have proved Nullstellensatz, till then I mean, however we will continue using

them. It is just that we postpone the proof till we develop sufficient techniques to prove it.

But one should not wait till that is done to see how it is applied.
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So, now proof of Nullstellensatz  version 2 which is  the statement  about  maximal  ideals,

assuming the weak Nullstellensatz. So, we will assume that, we will assume this statement

about the emptiness of V( I)  and prove this. So, what do we want to show? So, let m⊂R be a

maximal ideal, then m = R by definition; therefore by weak Nullstellensatz  V (m )≠∅. So,

take a point, let a, which is (a1 ,…,an)∈V (m ).

 So, let us, consider what is the set of polynomials vanishing at that point? So, let us sorry let

us go back here; . So, now, we want to look at this as a variety.
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So, this singleton point inside {(a1 , . .. , an )}∈kn is a variety. 

Now we talked about the ideal of a variety; the set of all polynomials that vanish in that I on

that  variety.   So,  this  is  a variety.  Let I denote the set  of all  polynomials  that vanish on

{(a1 , . .. , an )}; in other words that vanish at  a. So, then we observed the following.
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Then ( x1−a1 , . . . , xn−an )⊆ I ; and the constant polynomial 1 does not vanished at that point; so

this is not equal to R. This is the maximal ideal that, we proved any such ideal is maximal

over any field this we proved in the remark. So, therefore, ( x1−a1 , . . . , xn−an )=I

. So, let us go back what this ideal is. 

So, this is the ideal, this is the set of all polynomials that vanish on at that point. So, this is the

observation that we need. So, in particular,  since this point a∈V (m ), m⊆ I, that let us just

think about from it; m is some ideal which some collection of polynomials which vanish at a,

I is the set of all polynomials that vanish at a; therefore it must be inside I.

But again, again this is remember this is equal to ( x1−a1 , . . . , xn−an ). Again this is maximal

meaning not equal to the whole ring, this is also maximal; but maximal is a property under

containment  and  this  cannot  be  a  strict  inequality  then,  this  now  implies  that

m=( x1−a1, . . . , xn−an). So, this proves the version 2 of the Nullstellensatz from version 1,

which was the weak a Nullstellensatz. 

Let us we can quickly take a look at a Macaulay 2 example, which shows about this; I mean

just to see that it is a maximal ideal.
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So, we define a polynomial ring in three variables x, y, z, we map from RtendtoQ; so this

says x→1 , y→0 , z→2.



So, it is evaluating a polynomial at 1, 0, 2; but then [vocaiszed-noise] Macaulay 2 throws up

some error, that is because in order to compute these thing through algorithms, all these rings

must have certain structure and in this case QQ is not does not satisfy that. So, it has to be

some algebra where there are coefficients and then there are generators and QQ is not defined

like that in Macaulay 2.
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So, one must be wary of these issues. So, the way one to get out of that is, just define a map

from R→R itself. So, remember Q sits inside as the sub ring of constant polynomials. So, if

you map like this, the image of this map is actually Q; that is because these are constants. So,

this is indeed we doing the same map as earlier. 

And if you ask for it is map, now the algorithm is able to run and it will produce what is

expected  (z - 2,  y,  x - 1),. So, we will prove the other direction also.
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So, proof of the weak Nullstellensatz, assuming the Nullstellensatz version 2. So, this is the

description of maximal ideals, this is the description of V (I). So, what, what do we have? We

have an ideal I ⊂R.

So, what do we want to show? V ( I )=∅ iff I=R. So, one direction does not mean anything, I

mean this is automatic. If   I = R, then there is no point at which every element of I vanishes,

the constant the nonzero constant polynomials would not vanish anywhere. So, which is here

that we need.

 we assume that if I is R, then there is nothing prove; now we assume I ≠ R and then prove

that this is not empty.  So, remember that R is a Noetherian ring that we have proved. Then

the collection of ideals J, such that Λ={R−ideal J : I ⊆ J }≠∅ .

For example, I itself is inside here; this implies that Λ has a maximal element.
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This is one of the characterizing properties of Noetheiran rings; every non empty collection

of ideals has a maximal element, this implies that Λ has a maximal element. Let us call it m, .

As such it is just a maximal element of Λ; however the way, because what lambda is m is a

maximal ideal of R.

So, remember that the word maximal element; this refers to maximal element in this posit,

here it is a maximal ideal. So, write m=( x1−a1, . . . xn−an ). So, then I ⊆m; then again we can

show  that  this  is  the  kernel  of  the  evaluation  map  .  So,  therefore,  this  implies  that

f (a1,…,an )=0 for all f ∈ I ; in other words V ( I )≠∅. 

So, that is the end of this.


