Algebra - I Prof. S. Viswanath & Prof. Amritanshu Prasad Department of Mathematics Indian Institute of Technology, Madras

ALGEBRA I

1. Lecture 83: Jordan Canonical form

Recall that the rational canonical form is a block diagonal matrix of the form:

$$\begin{pmatrix} C_{f_1} & 0 & \dots & 0\\ 0 & C_{f_2} & \dots & 0\\ 0 & 0 & \ddots & 0\\ 0 & 0 & \dots & C_{f_r} \end{pmatrix}$$

with $f_1|f_2|...|f_r$. Given $f(t) = t^n + a_1 t^{n-1} + ... + a_n$, we have

/0	0		0	$-a_n$
1	0		0	$-a_{n-1}$
0	1		0	$-a_{n-2}$
0		·	0	
$\sqrt{0}$		0	1	$-a_1$ /

Example 1.1. Let $A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$, the rational canonical form of A is

$$\begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix}$$

For an *R*-module *M* and a prime $p \in R$, the p-primary part is defined as

$$M_p = \{ m \in M | p^k m = 0 \text{ for some } k > 0 \}.$$

M is *p*-primary iff $M = M_p$.

If $M = M_{\text{tors}}$ then $M = \bigoplus_p M_p$

For an algebraically closed field K and R = K[t],

prime ideals of $R \leftrightarrow (t - \lambda)$,

for $\lambda \in K$.

Given $A \in M_n(K)$, $M_A = K^n$, $t \cdot \overrightarrow{v} = A \overrightarrow{v}$, denote the generalised eigenspace for λ as V_{λ} . Then $V_{\lambda} = M_{A,t-\lambda}$ where

$$M_{A,t-\lambda} = \{ \overrightarrow{v} \in K^n | (t-\lambda)^k \overrightarrow{v} = 0 \text{ for some } k > 0 \}$$

For the primary decomposition $K^n = \bigoplus_{\lambda \in \mathbb{C}} V_{\lambda}$, with $A(V_{\lambda}) \subseteq V_{\lambda}$. Let $A_{\lambda} : V_{\lambda} \to V_{\lambda}$ be the linear map obtained by restricting A to V_{λ} . Then

(1)
$$A \sim \begin{pmatrix} A_{\lambda_1} & 0 & \dots & 0 \\ 0 & A_{\lambda_2} & 0 & \dots \\ 0 & \dots & \ddots & 0 \\ 0 & 0 & \dots & A_{\lambda_m} \end{pmatrix}$$

for some $\lambda_1, \ldots, \lambda_m \in \mathbb{C}$.

 $M_{A_{\lambda}}$ is $(t - \lambda)$ -primary iff

$$M_{A_{\lambda}} \cong K[t]/(t-\lambda)^{k_1} \oplus \ldots \oplus K[t]/(t-\lambda)^{k_r}.$$

Suppose $M = K[t]/(t - \lambda)^k$, consider a basis of M given by

$$e_0 = 1,$$

$$e_1 = (t - \lambda),$$

$$\cdots$$

$$e_{k-1} = (t - \lambda)^{k-1}.$$

Then $te_i = e_{i+1} + \lambda e_i$. Thus t acts by the matrix

$$J_{k,\lambda} = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 1 & \lambda & 0 & \dots \\ 0 & 1 & \lambda & \dots \\ 0 & \dots & 1 & \lambda \end{pmatrix}_{k \times k}$$

Then with A as defined in (??), we have

$$M_{A_{\lambda_i}} \cong K[t]/(t-\lambda_i)^{k_{i1}} \oplus \ldots \oplus K[t]/(t-\lambda_i)^{k_{ir_i}}.$$

Then we have

$$A_{i} = \begin{pmatrix} J_{k_{i1},\lambda_{i}} & 0 & \dots & 0\\ 0 & J_{k_{i1},\lambda_{i}} & 0 & \dots \\ 0 & 0 & \ddots & \dots \\ 0 & \dots & 0 & J_{k_{ir_{i}},\lambda_{i}} \end{pmatrix}$$

Example 1.2. Let A be a matrix such that $M_A \cong K[t]/(t-2) \oplus K[t]/(t-2)(t^2-5t+6)$. Then

$$A \sim \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & -6 \\ 0 & 1 & 5 \end{pmatrix}$$

in its rational canonical form. Since $t^2 - 5t + 6 = (t - 2)(t - 3)$, $K[t]/(t - 2)^2(t - 3) \cong K[t]/(t - 2)^2 \oplus K[t]/(t - 3)$ ALGEBRA I

Then
$$M_A \cong K[t]/(t-2) \oplus K[t]/(t-2)^2 \oplus K[t]/(t-3)$$
. Thus

$$A \sim \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

Example 1.3. Let

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Then calculating the Smith normal form we have

$$M_A \cong K[t]/(t^2 - 1) \oplus K[t]/(t^2 - 1)$$

$$\cong K[t]/(t - 1) \oplus K[t]/(t + 1) \oplus K[t]/(t - 1) \oplus K[t]/(t + 1)$$

$$\cong K[t]/(t - 1) \oplus K[t]/(t - 1) \oplus K[t]/(t + 1) \oplus K[t]/(t + 1)$$

Thus the JCF of A is

$$A \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$