Algebra - I Prof. S. Viswanath & Prof. Amritanshu Prasad Department of Mathematics Indian Institute of Technology, Madras

ALGEBRA I

1. Lecture 81: Deciding similarity

Given matrices $A, B \in M_n(K)$ over a field K, when are they similar? Recall that M_A, M_B are K[t] modules by the action

$$p(t)_A \overrightarrow{v} = p(A) \overrightarrow{v},$$

$$p(t)_B \overrightarrow{v} = p(B) \overrightarrow{v}$$

Suppose $f: M_A \to M_B$ is a K[t]-module isomorphism. Then

$$f(p(t)_A \overrightarrow{v}) = p(t)_B f(\overrightarrow{v}),$$

for all $p(t) \in K[t]$.

Let $X \in GL_n(K)$ be such that $f(\overrightarrow{v}) = X \overrightarrow{v}$. Then

$$Xp(A)\overrightarrow{v} = p(B)X\overrightarrow{v},$$

for all \overrightarrow{v} . Then

$$Xp(A)X^{-1} = p(B),$$

for all $p(t) \in K[t]$. In particular we have $XAX^{-1} = B$, i.e., $A \sim B$. Conversely, if $A \sim B$ then $\exists X \in GL_n(K)$ such that $XAX^{-1} = B$.

$$\implies Xp(A)X^{-1} = p(B),$$

for all $p(t) \in K[t]$. So defining $f(\overrightarrow{v}) = X \overrightarrow{v}$ gives a K[t]-module isomorphism.

Theorem 1.1. Let $A, B \in M_n(K)$. Then $A \sim B$ iff $M_A \cong M_B$.

Recall that

$$M_A \cong K[t]^n / \mathcal{C}(tI - A),$$

$$M_B \cong K[t]^n / \mathcal{C}(tI - B)$$

Theorem 1.2. $A \sim B \iff tI - A, tI - B$ have the same Smith Normal form.

Example 1.3. Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Then
 $tI - A = \begin{pmatrix} t - 1 & 0 \\ 0 & t + 1 \end{pmatrix}$
 $\approx \begin{pmatrix} 1 & 0 \\ 0 & t^2 - 1 \end{pmatrix},$

ALGEBRA I

since the first diagonal entry is the gcd of the 1×1 minors, the second diagonal entry is the gcd of the 2×2 minors, etc. Similarly

$$tI - B = \begin{pmatrix} t & -1 \\ -1 & t \end{pmatrix}$$
$$\approx \begin{pmatrix} 1 & 0 \\ 0 & t^2 - 1 \end{pmatrix},$$

Thus $A \sim B$.

Example 1.4. Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Then

$$tI - A = \begin{pmatrix} t & -1 & 0 \\ -1 & t & 0 \\ 0 & 0 & t - 1 \end{pmatrix}$$
$$\approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & t - 1 & 0 \\ 0 & 0 & t^2 - 1 \end{pmatrix},$$

since the first diagonal entry is the gcd of the 1×1 minors, the second diagonal entry is the gcd of the 2×2 minors, and the third diagonal entry is the gcd of the 3×3 minors. Similarly

$$tI - B = \begin{pmatrix} t & 0 & -1 \\ 0 & t - 1 & 0 \\ -1 & 0 & t \end{pmatrix}$$
$$\approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & t - 1 & 0 \\ 0 & 0 & t^2 - 1 \end{pmatrix},$$
$$tI - C = \begin{pmatrix} t & 0 & -1 \\ -1 & t & 0 \\ 0 & -1 & t \end{pmatrix}$$
$$\approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & t^3 - 1 \end{pmatrix},$$

Thus $A \sim B \not\sim C$.