Algebra - I Prof. S. Viswanath & Prof. Amritanshu Prasad Department of Mathematics Indian Institute of Technology, Madras

ALGEBRA I

1. Lecture 08: Group Homomorphisms

Definition 1.1. A homomorphism from a group G to a group H is a function $f: G \to H$ such that $f(g_1g_2) = f(g_1)f(g_2)$ for all $g_1, g_2 \in G$.

Given groups G, H with identities e, 1 respectively and a homomorphism $f: G \to H$ we have:

- f(e) = 1.
- $f(g^{-1}) = f(g)^{-1}$ for $g \in G$.

Now, I will end this recording with by listing a few basic properties of homomorphisms .

- A homomorphism is an isomorphism if and only if it is a bijection.
- For any group G, the identity map is a group homomorphism.
- If $f : G \to H$ is a group homomorphism and $g : H \to K$ is another group homomorphism, then $g \circ f$ is also a group homomorphism.