
ALGEBRA I

1. Lecture 79: Structure of finitely generated abelian
groups

Let R be a PID and M be a finitely generated R-module generated
by {x1, . . . , xm}. Define a surjective homomorphism φ : Rm →M by

φ(ei) = xi, for i = 1, . . . ,m.

Then M ∼= Rm/kerφ. Suppose kerφ is generated by −→v1 , . . . ,−→vn. Let
A ∈Mm×n(K) be defined by

A = (−→v1 | . . . |−→vm).

Then M ∼= Rm/C(A).
Suppose A has Smith normal form

D =



d1 0 0 . . . 0 . . .
0 d2 0 . . . 0 . . .

0 . . .
. . . 0 . . . . . .

0 . . . 0 dr 0 . . .
0 0 . . . 0 0 . . .
...

...
...

...
...

...


,

with (dr) ⊆ (dr−1) ⊆ . . . ⊆ (d1).
Then note that M ∼= Rm/C(A) ∼= Rm/C(D) and thus

M ∼= R/(d1)⊕ . . .⊕R/(dr)⊕Rn−r.

Theorem 1.1. Every finitely generated module M over a PID R is
isomorphic to

R/(d1)⊕ . . .⊕R/(dr)⊕Rf ,

for (dr) ⊆ . . . ⊆ (d1) ⊂ R and f ≥ 0. Moreover r, f and the ideals
(d1), . . . , (dr) are unique.

Note that Z − modules ↔ abelian groups. The action is given by
±ka = ±(a+ . . .+ a︸ ︷︷ ︸

k times

).

Theorem 1.2 (Structure theorem for finitely generated abelian groups).
Every finitely generated abelian group A is isomorphic to a unique
abelan group of the form

A ∼= Z/d1Z× . . .× Z/drZ× Zf .
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Note that |A| <∞ ⇐⇒ f = 0, and if f = 0 then |A| = d1 . . . dr.

Example 1.3. How many isomorphism classes of finite abelian groups
of order 12? For each such class we have the decomposition:

A ∼= Z/d1Z× . . .× Z/drZ,
with d1| . . . |dr and d1 ≥ 1 and d1 . . . dr = 12. There are two such
possibilities:

• A ∼= Z/2Z× Z/6Z
• A ∼= Z/12Z.

Note that A ∼= Z/2Z× Z/2Z× Z/3Z is not a valid decomposition.

Given a prime p ∈ R define

Mp = {m ∈M |pkm = 0 for some k > 0}.
M is p-primary if M = Mp. M ∼= ⊕(p) is prime idealMp.

Lemma 1.4. The module R/(d) is p-primary iff (d) = (pr) for some
r ≥ 0.

Proof. R/(d) is p-primary =⇒ pk(1 + (d)) = (d) for some r ≥ 0. So
pk ∈ (d) for some k > 0 which means d|pk for some k > 0. Thus
(d) = (pr). �

If M is a finite p-primary R-module then

M ∼= R/(pk1)⊕ . . .⊕R/(pkr),
for some k1 ≤ . . . ≤ kr.

For a finitely generated abelian group

A ∼= Ator × Zf ,

for some f . Ator
∼= Ap1 × . . .× Apr for some prime numbers p1, . . . , pr

and pi-primary modules Api .
Note that a finite abelian group is p-primary iff its order is a power

of p. Such groups are called abelian p-groups.

Example 1.5. How many nonisomorphic finite abelian groups are
there of order 360?

Since 360 = 23325, we have

A ∼= A2 × A3 × A5,

and |A2| = 8, |A3| = 9, |A5| = 5. For the 2-primary and 3-primary
components we have

A2
∼= Z/2k1Z× . . .× Z/2krZ

A3
∼= Z/3l1Z× . . .× Z/3lsZ
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with
∑

i ki = 3 and
∑

i li = 2. There are three possibilities for A2,
namely

Z/8Z
Z/4Z× Z/2Z
Z/2Z× Z/2Z× Z/2Z

and two for A3, namely

Z/3Z× Z/3Z
Z/9Z.

A5 is Z/5Z.
Thus there are 3× 2× 1 = 6 isomorphism classes of abelian groups

of order 360.

Definition 1.6. A partition of n is a nonincreasing finite sequence of
positive integers (k1, . . . , ks) such that

∑
i ki = n. The set of partitions

of n is denoted Par(n).

Lemma 1.7. The number of isomorphism classes of an abelian p-group
of order pn is equal to the number of partitions of n.

Theorem 1.8. Let n = pn1
1 . . . pnr

r be the prime factorisation of n. The
number of isomorphism classes of abelian groups of order n is∏

j

Par(nj).


