Algebra - I Prof. S. Viswanath & Prof. Amritanshu Prasad Department of Mathematics Indian Institute of Technology, Madras

ALGEBRA I

1. Lecture 79: Structure of finitely generated abelian **GROUPS**

Let R be a PID and M be a finitely generated R-module generated by $\{x_1, \ldots, x_m\}$. Define a surjective homomorphism $\phi : R^m \to M$ by

$$
\phi(e_i) = x_i, \text{ for } i = 1, \dots, m.
$$

Then $M \cong R^m/\text{ker}\phi$. Suppose ker ϕ is generated by $\overrightarrow{v_1}, \ldots, \overrightarrow{v_n}$. Let $A \in M_{m \times n}(K)$ be defined by

$$
A=(\overrightarrow{v_1}| \ldots | \overrightarrow{v_m}).
$$

Then $M \cong R^m/\mathcal{C}(A)$.

Suppose A has Smith normal form

$$
D = \begin{pmatrix} d_1 & 0 & 0 & \dots & 0 & \dots \\ 0 & d_2 & 0 & \dots & 0 & \dots \\ 0 & \dots & \ddots & 0 & \dots & \dots \\ 0 & \dots & 0 & d_r & 0 & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix},
$$

with $(d_r) \subseteq (d_{r-1}) \subseteq \ldots \subseteq (d_1)$.

Then note that $M \cong R^m/\mathcal{C}(A) \cong R^m/\mathcal{C}(D)$ and thus

$$
M \cong R/(d_1) \oplus \ldots \oplus R/(d_r) \oplus R^{n-r}.
$$

Theorem 1.1. Every finitely generated module M over a PID R is isomorphic to

$$
R/(d_1)\oplus\ldots\oplus R/(d_r)\oplus R^f,
$$

for $(d_r) \subseteq \ldots \subseteq (d_1) \subset R$ and $f \geq 0$. Moreover r, f and the ideals $(d_1), \ldots, (d_r)$ are unique.

Note that \mathbb{Z} – modules \leftrightarrow abelian groups. The action is given by $\pm ka = \pm (a + \ldots + a).$ $\overline{\text{k times}}$

Theorem 1.2 (Structure theorem for finitely generated abelian groups). Every finitely generated abelian group A is isomorphic to a unique abelan group of the form

$$
A \cong \mathbb{Z}/d_1\mathbb{Z} \times \ldots \times \mathbb{Z}/d_r\mathbb{Z} \times \mathbb{Z}^f.
$$

ALGEBRA I 2

Note that $|A| < \infty \iff f = 0$, and if $f = 0$ then $|A| = d_1 \dots d_r$.

Example 1.3. How many isomorphism classes of finite abelian groups of order 12? For each such class we have the decomposition:

$$
A \cong \mathbb{Z}/d_1\mathbb{Z} \times \ldots \times \mathbb{Z}/d_r\mathbb{Z},
$$

with $d_1 | \dots | d_r$ and $d_1 \geq 1$ and $d_1 \dots d_r = 12$. There are two such possibilities:

•
$$
A \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}
$$

• $A \cong \mathbb{Z}/12\mathbb{Z}$.

Note that $A \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ is not a valid decomposition.

Given a prime $p \in R$ define

$$
M_p = \{ m \in M | p^k m = 0 \text{ for some } k > 0 \}.
$$

M is p-primary if $M = M_p$. $M \cong \bigoplus_{(p) \text{ is prime ideal}} M_p$.

Lemma 1.4. The module $R/(d)$ is p-primary iff $(d) = (p^r)$ for some $r \geq 0$.

Proof. $R/(d)$ is p-primary $\implies p^k(1+(d)) = (d)$ for some $r \geq 0$. So $p^k \in (d)$ for some $k > 0$ which means $d|p^k$ for some $k > 0$. Thus $(d) = (p^r)$). $\qquad \qquad \Box$

If M is a finite p-primary R -module then

$$
M \cong R/(p^{k_1}) \oplus \ldots \oplus R/(p^{k_r}),
$$

for some $k_1 \leq \ldots \leq k_r$.

For a finitely generated abelian group

$$
A \cong A_{\text{tor}} \times \mathbb{Z}^f,
$$

for some f. $A_{\text{tor}} \cong A_{p_1} \times \ldots \times A_{p_r}$ for some prime numbers p_1, \ldots, p_r and p_i -primary modules A_{p_i} .

Note that a finite abelian group is p -primary iff its order is a power of p. Such groups are called abelian p-groups.

Example 1.5. How many nonisomorphic finite abelian groups are there of order 360?

Since $360 = 2^3 3^2 5$, we have

$$
A \cong A_2 \times A_3 \times A_5,
$$

and $|A_2| = 8, |A_3| = 9, |A_5| = 5$. For the 2-primary and 3-primary components we have

$$
A_2 \cong \mathbb{Z}/2^{k_1} \mathbb{Z} \times \ldots \times \mathbb{Z}/2^{k_r} \mathbb{Z}
$$

$$
A_3 \cong \mathbb{Z}/3^{l_1} \mathbb{Z} \times \ldots \times \mathbb{Z}/3^{l_s} \mathbb{Z}
$$

with $\sum_i k_i = 3$ and $\sum_i l_i = 2$. There are three possibilities for A_2 , namely

$$
\mathbb{Z}/8\mathbb{Z}
$$

$$
\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}
$$

$$
\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}
$$

and two for A_3 , namely

$$
\frac{\mathbb{Z}}{3\mathbb{Z}} \times \frac{\mathbb{Z}}{3\mathbb{Z}}
$$

$$
\frac{\mathbb{Z}}{9\mathbb{Z}}
$$

 A_5 is $\mathbb{Z}/5\mathbb{Z}$.

Thus there are $3 \times 2 \times 1 = 6$ isomorphism classes of abelian groups of order 360.

Definition 1.6. A partition of n is a nonincreasing finite sequence of positive integers (k_1, \ldots, k_s) such that $\sum_i k_i = n$. The set of partitions of *n* is denoted $Par(n)$.

Lemma 1.7. The number of isomorphism classes of an abelian p-group of order p^n is equal to the number of partitions of n.

Theorem 1.8. Let $n = p_1^{n_1} \dots p_r^{n_r}$ be the prime factorisation of n. The number of isomorphism classes of abelian groups of order n is

$$
\prod_j Par(n_j).
$$