Algebra - I Prof. S. Viswanath & Prof. Amritanshu Prasad Department of Mathematics Indian Institute of Technology, Madras

ALGEBRA I

1. Lecture 78: Structure of finitely generated modules over a PID

Let R be a principal ideal domain and suppose M is the finitely generated R-module. So, we can assume that M is generated by some finite set of elements x_1, \ldots, x_m for some positive integer m. Define an Rmodule homomorphism $\phi : R^m \to M$ by $\phi((a_1, \ldots, a_m)) = \sum_{i=1}^m a_i x_i$. ker (ϕ) is a sub module of M and (since R is a principal ideal domain; which also a noetherian ring) therefore finitely generated. So, let us say it is generated by v_1, \ldots, v_n . Form the matrix with the columns are v_1, \ldots, v_n . So $M \equiv R^m / \text{ker}(\phi)$.

Theorem 1.1 (Structure theorem for finitely generated modules). Every finitely generated *R*-module *M* may be expressed as

$$M \equiv R^s \oplus R/(d_1) \oplus \ldots \oplus R/(d_r),$$

where d_1, \ldots, d_r can be chosen in such a way that $(d_1) \supseteq \ldots \supseteq (d_r)$, and this decomposition is unique.