Algebra - I Prof. S. Viswanath & Prof. Amritanshu Prasad Department of Mathematics Indian Institute of Technology, Madras

ALGEBRA I

1. Lecture 76: Solved problems

Exercise 1.1. Find a 3 by 3 matrix over \mathbb{Q} matrix A such that the associated module $M_A \equiv F[t]/(t^3 - 2t^2 + t - 3)$. Pick a basis for this module and then the matrix will just be however t acts on with respect to that basis. So, pick a basis $e_0 = 1, e_1 = t, e_2 = t^2$. They form a basis of this module and so let us figure out how t acts on this. So, $te_0 = e_1$, $te_1 = e_2$ and $te_2 = t^3 = 2e_2 - e_1 + 3e_0$. So the matrix is $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & -1 & 2 \end{pmatrix}$

Exercise 1.2. Find a matrix A such that $M_A \equiv F[t]/(t^2) \oplus F[t]/(t)$. Pick a basis $e_1 = (1,0)$, $e_2 = (t,0)$ and $e_3 = (0,1)$. Then let us figure out how t acts on these basis vectors $te_1 = e_2$ $te_2 = 0$ and $te_3 = 0$. So, $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$

the matrix A is just going to be $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercise 1.3. Find A such that $M_A \equiv F[t]/(t-3)^3$. We take as basis $e_0 = 1, e_1 = (t-3), e_2 = (t-3)^2$ and $te_0 = e_1 + 3e_0, te_1 = e_2 + 3e_1$ and $te_2 = 3e_2$. So, then we get that the matrix of A is $\begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.

Exercise 1.4. Find A such that $M_A \equiv F[t]/(t-a)^2 \oplus F[t]/(t-a)$, where a is some element of F. Take as basis $e_1 = (1,0), e_2 = (t-a,0)$ and $e_3 = (0,1)$ so that $te_1 = e_2 + ae_1, te_2 = ae_2$ and $te_3 = ae_3$ so that the matrix is $\begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$.