Algebra - I Prof. S. Viswanath & Prof. Amritanshu Prasad Department of Mathematics Indian Institute of Technology, Madras

ALGEBRA I

1. Lecture 71: Counterexamples to the Noetherian Condition

In this lecture we are going to look at counter examples to the Noetherian Condition.

Example 1.1. Take $R = K[x_1, x_2, ...]$ where K is a field. Then the chain $(x_1) \subset (x_1, x_2) \subset ...$ does not terminate. When R is not a Noetherian ring you can always find a finitely generated R - module which has a sub module that is not finitely generated. Take as an R - module R itself which is finitely generated. Let $I = \bigcup_r (x_1, ..., x_r)$ which is a sub-module of R.

Example 1.2. So, take R to be any ring and take M to be the infinite direct sum of R. Let $M_n \subset M$ consisting of sequences $(r_1, r_2, ...)$ such that $r_i = 0$ for i > n. Then $M_1 \subset M_2 \subset ...$ is a strict ascending chain which does not terminate.

Example 1.3. Take R to be the ring of integers and take M to be the rational numbers as a R module. Take M_n to be all rational numbers which are of the form $2^{-n}k$ for some integer k. Then $M_1 \subset M_2 \subset \ldots$ is an infinite ascending chain. So \mathbb{Q} is not a Noetherian \mathbb{Z} -module.

Lemma 1.4. If U is a finitely-generated module of \mathbb{Q} then it is generated by a single element.

Proof. Suppose it is generated by say q_1, \ldots, q_n . Let g be the gcd of the numerators of q_1, \ldots, q_n and let l be the lcm of the denominators, then $q = \frac{g}{l}$ generates the ideal (q_1, \ldots, q_n) .