
Lecture 67 [Determinants]

Let us talk about determinants ok. Here of course, the catch here is we are not talking about 
determinants for matrices over a field, but rather over general rings ok. So, recall ah. So, let me 
make the following assumption that R, let R be a commutative ring now; let R be a 
commutative ring.

Recall that means, in our notation if I look at what we called R op, the identity map, it sends 
every element to itself. This is an isomorphism of R → Ropright because the um operation in 
Rop is just the product in the reverse order; but since R is commutative ab = ba ok. All the way 
of saying it is therefore, that the identity map from R → Rop is an isomorphism ok. So, of 
course, why why do I want to bring in Rop and so on?

So, recall from last time, we talked about how to think about endomorphisms of free 
modules. So, a homomorphism from Rn → Rn is really given by an n × n matrix and this 
matrix, we said should correctly be thought of as an element of R op. But since R is 
commutative, I can replace Rop by R right because of this fact that I just said. This is true for 
R commutative ok.

And recall how the map was defined? Given a homomorphism φ to that homomorphism, we 
could pick the standard basis of Rn; what we call the ei’s and you just apply φ to ei and
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write out the the entries. I mean write the answer as a linear combination of the ei’s again and
write the entries in the ith column right. So, this we call the matrix of the homomorphism
φ ok. So, now what we want to do is to talk about automorphisms ok. So, what is an
automorphism? Remember that just means it is an invertible endomorphism .

So, an automorphism of Rn just means it is a map φ which also admits an inverse ok. So,
φ is said to be an automorphism, if there exist a map ψ which is again an endomorphism of
Rn such that φ ◦ ψ is the same as ψ ◦ φ and this is equal to the identity map of Rn ok.

So, the usual notion of automorphisms. It is an isomorphism from the module Rn to itself
ok. Now, here is the um important thing that if I have you know, so the question now
really becomes every endomorphism is associated to a matrix; but what can I say about
automorphisms, what do matrices of automorphisms look like ok? And so, here is the here
is the main proposition which answers that question and we will say a little bit more about
this. So, the proposition says that φ is an automorphism . So, same notation as before . So,
map from Rn → Rn if and only if, the matrix of φ has the following property.

Look at the matrix of φn × n matrix, if only if the determinant of that matrix; well, what
is the determinant? Well, we will come to that in a minute. If only if, the determinant is
a unit of the ring R ok. So, recall the unit means it is an invertible element of the ring R
ok. So, let me before actually getting into the proof and explaining more about this, let us
just do an example. Suppose, I take the ring R to be Z ok and suppose, I take a matrix

A =

[
2 0
0 1

]
, very simple diagonal matrix. Well, the determinant means the usual thing,

you sort of know how to take determinants of matrices um by using the formula, you expand
along rows or columns and so on.
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So, in this case if I have A =

[
2 0
0 1

]
, the determinant is just 2 times 1 which is 2, but

observe if I think of this as being a matrix with values over the underlying ring Z, then 2
is not a unit; it is not invertible in Z ok. It is of course, invertible if you think of it as an
element of Q the rational numbers or R the real numbers or complex numbers and so on,
but it is not a unit in in Z ok.

So, the point is you know so let let us just try and so, this is what I mean by saying that
the determinant must be a unit of R. So, let us first so you know as a preparatory step to
proving this proposition. Let us first convert this statement about automorphisms into the
corresponding statement about its matrix. So, observe φ is an automorphism means there
exists an inverse ψ, this is an automorphism the same as saying there exists ψ : Rn → Rn

such that as we said φ ◦ ψ = ψ ◦ φ is the identity operator on R n; but now, we also looked
at what does this mean in terms of the matrices.

So, I said that the map which associates to each homomorphism, it is matrix that map is
a ring isomorphism right. In other words, composition of maps goes to product of matrices.
I mean if you ever over a non commutative ring you would have to take R op; but over a
commutative ring, it is just the same as R itself. So, φ ◦ ψ. So, let me take the matrices on
both sides this is the product of the two matrices of φ and ψ. On the other side, it is the
product of the matrices; ψ and φ and the matrix of the identity operator is just the usual n
times and identity matrix ok with 1s on the diagonal. So, remember 1 is now here an element
of the ring R ok. So, I think of the the multiplicative unit of the ring R ok. So, this is this
is the n× n identity.

So, now what does this mean? And, and conversely, if suppose I could find corresponding
to the matrix of phi, if I could find another matrix such that you know the product gave me
identity in both directions. Then, I could just take ψ to be the the homomorphism; the the
endomorphism whose matrix is that given matrix ok.

In other words, it is it is sort of easy to see because everything is you know you can
identify homomorphisms with I am sorry, you can identify endomorphisms with matrices
and corrosion matrices. So, I can sort of reverse this, this chain of equations ok; if not
if there exists a matrix of ψ such that ok. So, what is this really mean? It says that to
understand when φ is an automorphism, it is enough to understand when the matrix of φ
has an inverse ok. So, this this matrix here is the inverse of this matrix φ ok.

So, therefore, φ is an automorphism is the same as saying the matrix of φ is an invertible
matrix ok. It is got a matrix inverse; but now, where is this happening. This is in the space
of all n× n matrices with entries in the ring R ok. So, recall that this itself is ring; the ring
of matrices with entries in in any ring R itself is a ring and we are saying that this matrix φ
has to be an invertible matrix in that ring, to be an invertible element of that ring ok. So,
what we need to therefore, do is really the following proposition.

So, what we need to prove is really the following fact that when is a matrix invertible? So,
a matrix A in the ring of n×n matrices is invertible, if and only if it is determinant is a unit
ok. So, this is really what our proposition amounts to. I have just converted everything from
homomorphisms to matrices ok. So, first thing is what is the definition of the determinant.
Well, it is it is the most obvious definition. So, let just convince ourselves that even if if A is
a matrix with entries in some commutative ring R, I can still make sense of the determinant
of A . So, how do we define the determinant? Well, we have the usual definition, where we
expand along the rows and so on.
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But in one shot, if one sort of wanted to write it here is how we we usually write this. We
say take all permutations of Sn; permutations in s n permutations of 1 through n and do
the following, let us look at the ok; I will call this epsilon of σ is a sign. So, I will just write
this as a sign. So, remember, we have the sign of a permutation which is +1, if it is an even
permutation and −1, if it is an odd permutation. So, I take the sign of of σ and then, a1σ(1)
. So, first row σ 1th column, take the element in the second row σ 2th column and so on.
So, I take this product anσ(n) ok and this is sum overall σ(n) If this is the usual definition of
the determinant in terms of the expansion along rows and so on.

Det(A) :=
∑
σ∈Sn

a1σ(1)a2σ(2)....anσ(n)

So, what what this amounts to is like saying if I have say 3 × 3 matrix. So, I I take this
from the first row, maybe this from the second, this from the third or you know I could take
this from the first row, I could take this from the second row, this from the third row and so
on. So, I I sort of run through all the possibilities of choosing one entry from each row and
one and each column. So, I have to choose n exact entries. I take their product and then, I
multiply by the sign. There is always a sign involved in the determinant expression and this
sum is exactly the determinant.

So, observe that this makes perfect sense over any commutative ring R ok. So, this firstly,
the answer lies in R because it is a product of elements from R and the commutatively of
of the ring is required so that I do not have to you know keep track of the order in which
I mean you could conceivably define this for non-commutative rings; but it would not have
the nice properties that you you expect of it ok. So, the commutative ring at least the nice
thing is that you do not need to keep track of the the order in which you you multiply right.
You take something from the first first row and then, you take something from the second
row or or you do it in the other order ok.
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So, this will ensure that the nice properties of the determinants remain. For example, if you
interchange two rows the the value of the determinant becomes a negative ok. So, things like
that we want to happen that will only happen if you assume that the ring R is commutative
ok. So, we only define it in that case ok great. So, observe that the order is immaterial and
the definition makes sense, it gives me an element of R and the other main reason for doing
this of course, it has all the usual properties that we expect of a determinant ok. So, for
example, so I have already said it belongs to R. So, just reiterate that the determinant of A
is an element of the underlying ring R.

Second property if you interchange two rows or columns, if two rows or two columns are
interchanged, the value becomes negative; minus of the original determinant ok that is the
second property. Property three, if I um you know I can do this recursive expansion along
rows or columns can recursively expand. So, this is just the usual way in which we compute
it and that is just the another way of saying that it is the same definition. And the fourth
property which is arguably the most important, which says that if I take the product of two
matrices, the determinant of the product is just the product of the determinants ok. This is
this is not so easy to prove from the definition ok, it requires a little work may be using the
elementary row operations and so on and this is something we will we will come to later.

So, for now, just think of this as a black box. So, just accept this formula. It works um
in some sense for the same reason that it works over a field. It is just a formal property of
of multiplying two things out and so on ok. So, we we will give a proof of this during the
you know maybe one of the problem sessions ok. So, let us let us go back to what we want
to prove. So, we really want to say that the determinant is a good way of detecting when
a matrix is invertible ok. If the determinant turns out to be a unit in the underlying ring,
then the matrix is invertible and conversely. So, let us prove this prove this statement.

So, first observe that if a is invertible . So, that is the easier half of the implication. So,
if A is invertible in the matrix ring, what does that mean? There exists a matrix B such
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that AB = BA = I equals identity and now, we use the the property of determinants that
determinant of det(AB) = detA detB = 1 and the determinant of the identity is just 1; it
just the product of the diagonal values and so, this implies that. So, now recall everything is
in the ring R; all these action is taking place in the inside the ring R. This is a ring element;
this is a ring element right. So, what that means is that the ring element detA has an inverse
in the ring, there exists an element in the ring such that their product is 1 ok.

So, this is exactly saying that determinant of A is a unit in the ring R ok. So, that that is
this one-half of the proposition ok. Now, let us prove the converse that if the determinant is
invertible in the ring, then the matrix A has an inverse matrix ok. So, let us do the converse
now. So, if determinant of A is a unit ok. So, what does that mean? In other words, I can
talk about an element called detA−1 ∈ R ok, there exists an element which is a multiplicative
inverse of the determinant ok.

Now, given this I need to produce an inverse for an inverse matrix for A and this is I mean
if you sort of just think about it for a minute, the clue for how to do this really comes from
the formula for the inverse that one uses in the usual case of fields, which is how does one
construct or um compute the inverse of a matrix A Well let us let me call that B, this is
what we usually do. We say it is one by the determinant times what is called the adjoint of
the matrix A right, the the transpose of the matrix of cofactors of A So, this is nothing but
so our our usual formula. So, let me put it within brackets over a field sorry within code.

So, we would write it like this one by detA times the matrix called adjoint of A which is
transpose of the cofactor matrix right. This is the usual formula. Now, what we have to I
mean this over a field in general, but what we have to realize is that this formula actually
makes perfect sense over any ring ok, provided I can make sense of 1 by detA ok. So, that is
exactly what I have assumed that detA−1 is an element of R ok. So, let us try just you know
as a guess, just try making the same definition. So, we will say B. Let us define B like this
and hope that it has the right properties ok.

So, now let me say B should be an element of where should be lie, it should be an element
it should be in n×n matrix with entries in R. Well, I will do the following. I will use detA it
is a ring element. The inverse of detA is again it is assumed to be assumed to exist element
of R. So, I will take this element of R and I multiply it by the adjoint matrix.

Now, what is the adjoint matrix? Does that make make sense over any ring R? Well, it
is the matrix the transpose of the cofactor matrix right; the adjoint of a matrix is defined
like this. This is you take the cofactor matrix of A and then, take the transpose. Now, what
does that mean? So, question now reduces to does the cofactor matrix make sense right or
does it make sense to define cofactors now, when you are over an arbitrary ring. Well, what
is the cofactor of an element? Suppose, I have a matrix A and what is the cofactor of the
ijth element?

Well, I just look at so ith row jjth column, the cofactor of this element is obtained by
deleting the ith row and the jth column; looking at the remaining matrix that is n− 1 ×n−
1, taking it is determinant and then, multiplying it by a sign right. So, that is exactly the
the ijth cofactor. So, recall that cofactor of the ijth element of A is nothing but determinant
of this matrix in which you delete the ith row jth column and then, you multiplied by a sign
right. That is − 1 to the i+ j

So, this this entire definition makes perfect sense even if A has elements from a ring R right
because all I am doing finally, is computing the determinant of some n− 1 ×n− 1 matrix
and I can compute determinants of matrices or or any ring of any size. So, this makes sense.
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So, this is well-defined right. This is in fact, defined it is an element of R again. Sorry, not
yeah; yeah the cofactor ij is an element of R ok, the cofactor matrix means i for every ij I
put the cofactor of ij ok. So, this entire definition makes perfect sense and. So, what do we
get finally? The adjoint of A is in fact a well-defined matrix, defined in the same manner
with elements in R ok and now, the question really is if I take the product of A and B, then
do I get do I get the identity matrix right and similarly, the product of B and A ok. Now,
let just do one computation; you know just check one of the rows and all the other rows are
similar, what do I get when I multiply AB, you know if I look at some say the first row of
the answer. So, 1 comma jth element here what does it look like? Well, it is by definition
(AB)1j =

∑n
k=1 a1kbkj ok. This is a sum over k .

So, what is b? b remember is the transpose of the cofactor matrix multiplied by the
determinant. So, what is bkj now? So, I need to say this is k goes from 1 to n a1k So, what
is the B matrix? B is nothing but detA−1 cofactor transpose . So, the k jth element here is
the cofactor of the j kth element. So, this is this into cofactor of the j comma kth element
of A ok. Because of the transpose and then, there is a sign that is (−1)j+k ok and then there
is a of course, a detA−1. So, remember all these is multiplied by a detA−1 and since any way
everything is a commutative ring, I can multiply things in any any order I want.

So, I will just put the detA−1 outside . So, this determinant of A−1, this is a sum over k
ok. Now, now comes the the important observation that a1k cofactor of (jk) ok. So, if I put
j equals 1, so remember j and k here; so, so sorry j is j is variable, I can I can choose j as
1. If I put j equals 1, so when I take j = 1 versus j 6= 1 . So, two cases. If j = 1, this is
just going to be the cofactor of the 1 comma kth element of A right. So, let me just for the
moment think of it. If j = 1, then this is the cofactor of the 1 kth element. This is a1k right
and I am summing over k So, what does that mean? It is like saying that I take this this
matrix. So, just draw this matrix here again . So, suppose this is my matrix A I am running
through the first row the entries of the first row right; a1k as k varies a11 a12 a13 and so on.
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I am multiplying each element by its corresponding cofactor because this is exactly the
cofactor of that element and the cofactor just means, I delete that row and column and look at
what is left. But that is exactly how you compute the determinant of a matrix by expanding
among the first row ok. So, when I form, when I take j equals 1, this sum here turns out
to be exactly the the answer is exactly determinant of A because of how the determinant
can be computed by expanding along a row and outside, remember I have detA−1 right. So,
detA−1·detA So, this answer is just a1 ok. Now, what about the other guy? Suppose, j is
not 1; what does that mean? It is like saying I take the the entries of the first row ok, these
these blue dots here and I multiply them with the the cofactors of some other row ok, j is
different from 1.

So, for example, let us say j is 2. So, I I multiply these blue dots with the cofactors of
the brown dots ok. So, I I I do it along two different rows. Now, the point is that expansion
is um well what what does it mean to um take the cofactor of of the brown dots. Every
time, I compute the cofactor of a brown dot, I will have to delete that second row and the
corresponding column right, that is how the cofactors of the elements in the second row are
computed ok. So, the point is that this answer now for if j is 2 here, this answer will not
depend on what the those actual values of the brown dots are ok. So, what I am concluding?

So, this is the this is the main argument. I am multiplying the values of the blue dots
here with the cofactors of the brown dots here ok. Now, since every time, I compute the
cofactor of a brown dot, I have to delete the row there. So, I will have to delete the second
row each time and only the remaining elements will will be part of the calculation. So, this
final answer here does not depend on what the entries of the second row R. It is the same
answer for all all possible choices of second row ok.

Now, that is a that is a very useful thing to know because here is what I can do then,
since the answer does not depend on the second row, I can choose a convenient I can make a
convenient choice of second row . So, let me do the following. I will just make the entries of
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the second row equal to those of the first row ok. So, let us make this choice I I know modify
my matrix, I take the new matrix whose second row entries coincide with the entries of the
first row. By the argument, we just gave this this sum here does not depend on. So, it will
it will give me the same answer, even after I have done this modification ok.

Now, let us see whether it makes sense. So, now, what am I doing? I am computing the
values of the the blue dots above with the cofactors of of the corresponding blue dots below;
but since I have chosen these numbers to be the same ok, each dot above is equal to the value
below it. Now, this sum has a meaning. I can make sense out of this sum. This sum is just
the determinant of this new modified matrix when expanded along the second row ok because
I made both blue dot value as the same. So, I can think of it as I I run over the second row,
take each blue dot multiply it by its cofactor; take a blue dot, multiply by its cofactor and
so on and when I make you know do that summation that is exactly the determinant, when
I expand along the second row. So, this is therefore, going to give me determinant of A−1

that is still outside times determinant of let me call this A hash this modified matrix ok.
Now, what was this modified matrix? It was obtained by making the entries of the first

row and the second row the same ok,; but now we know the answer to this because when
two rows are identical, then the determinant must be 0 right that follows from the fact that
when I interchange two rows, the value becomes negative. So, in this case therefore, I have
obtained that this is 0 ok. So, what is that give us we have finally proved that this product
AB when you look at it is 1 comma jth element, it is 1, if j is 1 and 0 otherwise ok. So,
you you can repeat the same same sort of argument replacing this one with any other row i
you can replace with any row i and then a similar sort of argument works. So, what we have
really shown is that only when j equals I, you will get 1 and if j is not equal to i you will
get 0 . So, this argument actually shows that the product AB is identity and you can just
repeat the same thing in the other order ok, that corresponds to expanding along columns
rather than expanding along rows. So, you just have to repeat the same argument.

So, in in some sense what this does is really copies the same proofs that work in the case
of fields by realizing that you know you really are not using the property of fields anywhere.
you It will work perfectly well over any ring any commutative ring provided that that 1 by
determinant A that that is the only catch provided that term makes sense, then you are ok
ok. So, this is a very important sort of statement that a matrix over a ring R is invertible,
if only if the determinant of the matrix is a unit in the ring ok. In particular, that example
that we gave initially this matrix A which is 2 0 0 1, the determinant is not a unit in said.
This matrix is not invertible in M2(Z) ok. So, here is our little corollary that if I take this.

um So, observe this example that I gave in the beginning which is the matrix A =

[
2 0
0 1

]
is not invertible in the ring of matrices with entries in Z ok. It is I mean it is invertible, if
you think of the ring R as being the rational numbers or Q and so on. And in some sense,
you can see you know it is invertible over Q it is invertible as an element of M2(Q) And in
fact, if you if you sort of use the usual way to compute the inverse, it is 1 by determinant
of A into the transpose of the matrix of cofactors which in this case is this. So, here is the
inverse ok the by the usual formula for computing and you can notice that well these entries
are not in Z.

So, this is half 1
2

[
1 0
0 2

]
that is the inverse right. So, it it sort of ties up that you

can invert it over Q; but the inverse will not have integer entries, it is going to have some
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denominators ok. So, this is this sort of theorem is very important. And let us end this with
a very important proposition which is a corollary of all these analysis with determinants and
so on which says that if I have a free module Rn ok, so this is all again everything we have
said is only when R is a commutative ring .

So, if R is a commutative ring, then the free module Rn ∼= Rm, if and only if n = m ok.
So, I mean this is of course one of the statements we would like to have that the vector spaces
have this nice notion of dimension and a vector space say over the complex number cn and
cm are two different vector spaces, if n and m are different right; the dimension is n and we
we would like to prove something similar. It turns out we can really only prove it in the case
of commutative rings. It is not two in general and for commutative rings the proof sort of
proceeds via determinants. So, let us prove; let us give a proof of this um . So, what does
it mean to say Rn ∼= Rm are isomorphic? It means that there is isomorphism between them.
In other words, there is a homomorphism φ which admits an inverse.

So, in other words, there are maps in both directions such that phi, ψ is the identity ah.
So, φ, ψ is the identity on Rm and ψ ◦ φ the the other order is the identity on Rn ok and
again, as we have been doing throughout, it is best to convert everything to matrices. So,
let us give the matrices names. Let A denote the matrix of phi; B denote the matrix of ψ
ok. So, one of them is so let us see what the sizes are. This is an m × n matrix ok; Am×n
and Bn×m ok. So, we need to prove that m and n are equal. So, we will we will just make
an assumption. So, suppose m is the smaller the two ok, we can repeat the same argument
for the other case. Suppose, m is smaller than n ok. Now, if m < n so what was A? A was
the smaller. So, let us say let us go up there m is the smaller number. So that means, that
A has fewer rows, more columns. B has um more rows and fewer columns.

So, what does A look like therefore? A looks like this a is m × n . So, it is got some m
rows, but lots more columns. It is a rectangle of this kind. B is sort of the opposite, it is
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got lots more columns and fewer rows; sorry, lots more rows and fewer columns ok. So, this
is m× n; this was n×m ok. So, now the claim is that I mean what we are saying really is
that when you multiply these two matrices AB, you will get m × n matrix, m ×m matrix
that is also the identity and BA is also the identity right. So, that is really what these these
two equations mean in terms of homomorphisms. The same thing here implies that. So, we
know the following that when I multiply AB, it should give me a m×m matrix.

So, it is the identity m×m and when I multiply BA, it should give me the identity n× n
ok. The claim is that this really cannot happen when you multiply two such rectangular
matrices, both cannot give you the identity ok. Specifically, we claim that this can never
happen ok; the larger one can never be the identity matrix. So, let us lets prove that. So,
claim is this this cannot happen ok. So, claim BA cannot be the identity ok. Remember n
is a larger number. So, the larger identity matrix that can never happen ok. So, let us try
and prove this, um maybe we will just do it sort of by example with of with sizes. So, let
me just take B to be 3 × 3 for example. So, B has I mean you can make this into a general
argument 2.

So, suppose B looks like this; B is say 3 × 2 ok and then, I multiply it by A which is 2 ×
3; 3 columns and ok. Now, I I claim that this product cannot give me the identity right. So,
let us see I want this suppose it gave me the identity, where is the contradiction. So, suppose
I got this . So, they are all 1s ok. Suppose, I had this where is the contradiction. So, let us
do the following. So, let us observe. So, let let me just move this over . So, let us say this is
the answer.

Now, let us let us do something to this matrix; let us make B and A somewhat bigger ok.
So, I am going to make instead of B, I will put one additional row ok. So, here is let us do
the following. So, let us move these over. So, make some more space for B. So, I am going
to augment B now as follows. So, I will put an additional. So, I am going to make both of
them into square matrices. So, I have augmented B ok. So, this new augmented matrix I

will call B̂ and Â I will augment by just putting zeros on the bottom ok, this is A hat ok.
So, let us let us see I I claim that the same equation holds.

If BA is identity, so if BA is identity, then I claim that B̂ Â is also identity; where, B̂ and

Â are just the augmented matrices ok. So, I made both n×n Why is this? Well, just observe
what the the definition of um you know how how would you have done matrix multiplication.
Well, you take the entries in the first row of B and multiply them by the entries in the first
column right. Now, that multiplication what will it do? What is the what is the difference

when you went from B → B̂ and A→ Â hat? Well, it has that you know that multiplication
involves one extra term which is the 0 into the 0 right. These two blue zeros are extra; they
were in there initially.

But they do not contribute anything to the sum right, it it is just a 0 anyway. So, it is
only the original two red dots multiplying with the original two red dots that matters the
what I have added extra is just a 0. So, the answer here does not change, it is still a1 ok.
Similarly, look at the second for example, the next entry the first row of B is multiplied by
the entries of the second column of A hat and the only additional term I am introducing is
this 0 times this 0 ok and that is again no contribution. So, it is only the original red into
red + red into red that matters.

So, originally the answer was a 0 right because B into A is identity. Therefore, the the
same answer holds. It is still identity; I mean still a 0 and so on. So, you you just try doing
this to each of these um to to each of you know these 9 multiplications, you will have to do.
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And you will notice that really you are you are not adding anything new. It is just the same
answer as before ok with the 0 tagged along ok. So that means, that if BA is identity, then
the augmented matrices B hat A hat also give product identity, but observe that both B hat
and A hat have determinant 0 right. Now, I am in in the the square matrix case and I can
compute determinants.

Now, observe det(B̂Â) must actually be the determinant of the identity matrix which is

1. But we know that this is detB̂ detÂ, well both of which are 0 because we explicitly put
one 0 row or 0 column into both ok. ah So, that is that is the end of the proof, that is a
contradiction right; you cannot have BA equals identity means that you cannot have m less
than n Observe by the way, in this case that AB could be identity. If you try doing the same
proof with AB, you won’t be able to construct a contradiction ok.

It is only BA that um breaks down ok. So, that is the end of the proof because we have
shown that m less than n gives rise to a contradiction. If n is less than m, then you you do
the other order. Then, you show that AB cannot give you the identity ok. So, this is an
important statement. So, what this finally, this proposition proves is that Rm and Rn can
be isomorphic, if and only if n and m are the same ok and this involves the assumption that
R is a commutative.
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