
Lecture 60 [More examples of homomorphisms]

Let us talk about a few more examples of homomorphisms . So, we saw few examples 
already. So, here is an example with the ring R being the group algebra ok. So, recall that 
the group algebra of a finite group or the group ring of a finite group over a field K is well, 
what was it? As a vector space, it had elements which look like 1g So, these were the basis 
elements, as g runs over the the group G. So, recall here, I am taking G to be a finite group. 
So, these form a basis of this space thought of as vector space over K.

But what is interesting here really is the ring structure. So, we take 1g multiplied by 1h 
we said is 1gh ok. So, look back on on the lectures on the group ring and so on to recall the 
definition and let us do a specific case. Let us take G to be the group S3 , the symmetric 
group and K to be any field. So, R is K[S3] , this case K is just any field here. So, recall, 
we had talked about certain module for this group ring. What was that?

The module M was as an underlying abelian group, it was just a space K3 comprising 
column vectors (x1, x2, x3); where, xi has come from K ok and so, that is the underlying 
additive structure, that is the abelian group. In fact, it is a it is also vector space; but that
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is at the moment we think of it as a as an abelian group. And the action or the these scalar
multiplication by these basis elements 1σ, we had said is given by the following formula,
we can make this into. So, recall M. So, recall the following that M is R module and via
the following definition that the the elements of the basis elements 1σ’s, they act on this as
follows. It maps it to a permutation of the three co-ordinates and we have said you need to
use σ inverses there ok.

And this is for all σ ∈ S3 ok. So, again look back on that lecture to recall how this became
an R module and so on. It is a left R module. Now, what we have going to do is to define
homomorphism of this space to itself ok.

So, let me take this space this module K3 and let me define for you a homomorphism of
K3 to itself and the the the map is the following. To look at (x1, x2, x3); the vector map to
(x1 + x2 + x3, x1 + x2 + x3, x1 + x2 + x3) in each of the three coordinates . So, it just sums
the three coordinates and places that value in each of them ok. So, I claim that this map is
actually a homomorphism ok. So, let us check this. So, claim f is R homomorphism; where,
R is the group ring. Let us prove it. What do we need to do? We need to check that this is
it satisfies the two axioms.

So, the additivity is easy. It is just you know easy to check if I take a sum of two vectors,
then the the answer will be again a sum. So, this is straight forward. I will leave it for you
to check; easy. But the key property we need to check really is the the compatibility under
scalar multiplication that I can pull the r out for all x in K3 ok. Why is this possible? Well,
let us take R to be these special elements, these basis elements 1σ and let us check it for
those ok, it turns out to enough to for those elements.

So, let us check for R equals 1σ. So, on the one hand, I have f(1σx) . So, my question
is this is this the same as 1σf(x) ok. So, I need to compute both sides and check that they
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are actually equal. So, let us do that. So, let us first compute the left-hand side of this, this
equation.

So, f(1σx). So, what is this? Well, first I need to to operate 1σ on x ok and recall, what
1σ does. So, here is the action of 1σ; when 1σ acts on x1, x2, x3. It just permutes the three
coordinates x1, x2, x3 in some way according to σ. It is it is still the same three guys, but
they occur in some other order ok. But observe that when I apply f to that answer what
is f doing? f is just summing up the three coordinates and giving me the total. Now, if I
permute the three coordinates and then, I sum them up, well that is the same as the sum is
the same as the the sum which I get without permuting the coordinates right.

It is the same answer anyway. So, the left hand side is well it is xσ−1(1),xσ−1(2),xσ−1(3) in
each component; but that is the same as just saying it is the sum x1, x2, x3. Well, I let me
just say multiplied by the vector 1, 11 that is the same as this functional ok.

So, it is it is I can compute like this and now, observe that what about the right hand side?
So, ok, I have computed the left hand side. The right hand side is I am supposed to take 1σ
and I am supposed to act it on the vector x1 + x2 + x3 in each component; x1 + x2 + x3 ok
in each component. Now, what does 1σ do to this vector? Well, it again permutes the 3-3
components, but all three are equal to each other. So, when I permute the three, I do not
get anything new; I just get the same same answer again ok.

So, observe because the three components are the same, it just gives me the same answer
once more. It is just x1 + x2 + x3 on each components ok and so, that is exactly equal to
the left hand side ok; observe the left hand side was also the same thing ok. So, we have
checked it for things of the form 1σ and again I leave it as an exercise for you to check that
its true more generally if I take my ring element to be sort out the more general form, a
linear combination. So, this is over all

∑
σ∈S3

cσ1σ are all field elements ok.
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Recall that is a typical element of my group algebra or group ring and you know check that
the same check for such ring elements as well, the most general ring elements that the the left
hand side and right hand side will actually be equal ok. So, that is the first example for this
lecture, homomorphism of a module over a group ring ok. Now, here is a second example,
let us look at another non-abelian group, the group of n cross I am sorry non abelian ring.
The ring of n× n matrices over a field K. So, let n be at least 2 K is any field .

So, this is the matrix ring and recall again from one of our last lectures that we constructed
a module for this ring and the module was just again Kn which is all column vectors of size
n and what was the action? To sort of the most obvious one; how does the ring R act on
vectors from Kn. So, if I take an element of R. So, in this case elements of R are nothing
but matrices . So, if I take A ∈Mn(K) and v ∈ V ; then, how do I scalar multiply v with A?

Well, the answer is you just multiply that matrix with that vector, it will again give you
a column vector that is the answer ok . So, this is this is I am just recalling for you the the
scalar multiplication on this module V ok by elements of R . So, again V is an R module
ok. So, again look back on the the previous lectures to to recall precisely how this became a
module and so on. But for now, I am interested in trying to figure out what homomorphisms
look like ok.

So, what do I want to do? I want to understand if f : V → V is R homomorphism ok,
then what can I say about f? What does that tell me about f ok? In other words, can I
somehow characterize all homomorphism from this module to itself ok, ok. So, let us again
see what is the consequences of this being a homomorphism would be.

So, observe for a start that I can do the following, let me take A. So, . So, what is what is
a homomorphism let us again recall its two properties; f(x + y) = f(x) + f(y); fx + fy for
all x, y ∈ V and f of property 2, f(rx) = rf(x) for all x in my ring which in this case Mn(K)
. So, let me try to understand what are all the various consequences of these two definitions.



5

So, in particular let me start with this axiom 2 and put take a special case, let me take
my R ring element to be the IV matrix ok or more generally, let me take it to be λIV , where
λ is a is an element of the K and IV just denotes the the IV matrix ok. So, λ · IV is the
scalar diagonal matrix with all λs along the diagonal. So, suppose I take this particular ring
element and see what it implies, so I have f(rx) ; it should be rf(x).

Now, what is f(rx)? Well, f(rx) by definition is I have to act λ · IV on x. So, this is
f(λ · IV x) multiplied with the the vector x. So, recall x now is a column vector here ok. The
right hand side is well again I have to multiply the λIV with the column vector fx ok. So,
what does that mean? Well, this guy here is just if I multiply IV with Xi get back x. So, this
is just f of the column vector x multiplied by this scalar λ. In the right hand side is again
IV · fx will just give me fx again. So, this is nothing but the scalar λ · fx ok. So, what do I
conclude?

Well, for these special matrices are the scalar matrices, I conclude that f(λx) must give
me the same answer as λ(fx) and this should be true for all scalars λ from the the base
field K ok and this should sort of remind you of something that we we did last time for
another example . So, we now look at the additivity property that we have that was from
first axiom. Together with this special property, we have concluded and what do these two
things tell us? It tells us that if you think of V only as vector space over K, then f is a linear
transformation. So, these two properties tell you that f is nothing but a linear operator on
V ok; thought of as a vector space. So, let me say, let me call it K linear operator; I am only
thinking of it as a K vector space ok.

So, first I have concluded its a linear operator ok good, but again I have to use the full force
of my hypothesis. I know that f(rx) = rf(x) for all r’s for all matrices, thus far I have only
used R equals scalar matrices to make my first conclusion. So, let us let us do it a little bit
more generally. Let us use all r’s. So, first before that observe f is a linear transformation.
So, what does the linear transformation or a linear operator mean? So, observe first note f is
a linear operator on the space of column vectors; just means that f is given by multiplication
by some matrix ok. So, let us call it the matrix P may be ok. If you wish, this is just a
matrix of this linear operator with respect to the standard basis of Kn. So, any any linear
operator always has a matrix and in this case, I take the standard basis I compute the matrix
of f with respect to the standard basis; then of course, the f evaluated on x is nothing but
the matrix of f multiplied by the column vector x ok. So, any linear operator is nothing but
multiplication by a matrix P. Now, the question is what are the possible values of P right.
If I tell you what P is, I know what f is.

So, let me try and figure out if f is a homomorphism of R modules, what does it tell me
about this matrix P ok? So, now, let us use the full force of the hypothesis f of rx is rf
x, this is known in MnK ok which means what? So, let me take a let me instead of R, let
me call it A ok . So, it is may be better notation because psychologically I think of it as a
matrix. So, f of Ax should be a acting on f of x for all matrices A in MnK.

Now, what is this mean? I have just told you what f is right, f is just multiplication by
P. So, this means in particular that if I take Ax and I multiplied it by P should give me the
same answer as A · Px for all A in MnK and for all column vectors x in K power n ok.

Now, what is that mean? Well, it saying that the the matrix PA and the matrix AP ok,
they give me the same answer when I multiply it by x for all x ∈ Kn ok. This means in
particular that the matrix PA has to be the same as the matrix AP right. When I multiply
it by every vector, I get the same answer; that means, the two matrices are actually equal.
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One way of seeing it is by multiplying it by the the standard basis vectors ok, that give
you each column of the product ok. So, I have concluded that P must commute with this
matrix A, but it must commute with A for every A ∈Mn(K). In other words, this matrix P
is extremely special, it commutes with every matrix. So, this belongs to what is called the
center of this ring ok.

The center of a ring is just set of elements of the ring which commute with all elements of
the ring ok. So, I conclude that this matrix P must actually belong to the center of this ring
ok and here is a little fact which maybe we will prove during one of the tutorials is that the
center of the ring of matrices.

In other words, the set of matrices which commute with all matrices is nothing but the
scalar matrices. These are the only ones which commute with all matrices ok, set of all λ
in K ok. So, what this means is that this matrix P is actually a scalar matrix . So, what
does that what does this? I mean follow moment accept this as a fact. So, what conclusion
do we make? We conclude then that the the matrix P therefore, must look like sum scalar
matrix. Therefore, in particular this homomorphism f which looks like multiplication by P
is just nothing but λ · IV (x) .

So, this is just f(x) this homomorphism is just this very simple trivial homomorphism
which is scaling by λ ok. So, what we concluded is that the only homomorphisms from
Kn → Kn are this scaling homomorphisms ok, the maps which send a vector x to some
multiple of x ok. And that multiple λ is of course some fix. So, for some fixed λ for λ ∈ K
. So, if I choose different λ’s of course, I get different scaling operators ok. So, those are
exactly the set of all homomorphisms. So, we have made the following conclusions. So, set
of all f : Kn → Kn such that f is R linear or is a homomorphism, homomorphism of Mn(K)
modules .
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So, I want think of this as Kn as Mn(K) module, the set of all homomorphisms is just the
set of all scaling maps. So, this is just set of all ah. So, maybe we should call this scaling
map something. So, I fix a λ. So, maybe I call this fλ, we are scaling by λ map.

So, this is just the set of all fλ, where λ ranges over all elements of K . So, exactly the
set of scaling scaling map maps ok. So, that was a second example of what homomorphisms
look like for this particular module over the matrix ring ok. Now, here is another interesting
example, slightly more general which is that suppose R is any ring ok and recall that I
can think of R as a module over itself, R is a module over itself with respect to this left
multiplication action. So, how does a ring element; what does the scalar multiplication on
x? It just multiplies rx ok.

So, this is the scalar multiplication operation. So, this is the scalar multiplication ok. In
addition is of course, the usual addition of the ring now let us ask when you think of R as
module over itself in this manner what are homomorphisms from R→ R .

So, I want to know if f is a homomorphism, then what can I conclude about f? What
sorts of possibilities are there? So, let us again plug in to the definition a homomorphism
means f(x+ y) = f(x) + f(y) for all xy in R; property 2 says f(rx) = rf(x);x ∈ R ok. Now
again, like we did before. So, let us use the second property that is the one which usually
gives us something interesting non trivial . So, let me take, in this case let me just take x to
be the identity element of the the ring ok. So, take x to just be the element 1 of the ring R
and now, let us see what I get from that.

So, I get f(r) · 1 should just be r · f(1) ok and this should be true for all ring elements
r ∈ R. I fixed x to be 1 here. Now, what is this mean? Well, this just means the left hand
side is f of R; right hand side is r · f(1) . So, this is what I conclude. I have actually figured
out what value my f has on the ring element R. The value is just r · f(1) ok. So, f(1) is
some particular element of my my ring here. So, let us call f(1) as something.

So, let a be the element f(1). So, we will just give this a name let us call it a. So, then
observe that this homomorphism f of r is just this following map which is R mapping to
r ·a. So, this is some· what is called the right multiplication by a. This is just the map which
is right multiplication by the element a ok. So, the the the beautiful thing here is that the
homomorphisms from R→ R when you think of R as a left module over itself.
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So, remember this is I am thinking of it as a left module over itself via the scalar multi-
plication, then the homomorphisms from R → R turn out to be right multiplication maps.
It is all of this form where each element is a is multiplied on the right by some ring element;
whereas, if you now type the same thing where sorry let me leave this as a little exercise for
you.

Recall I can also think of R as a right module over itself, as a right R-module via the
following thing if I take a ring element x and I think of right action of r, this is just multiplying
on the right. So, this is a scalar multiplication for all x ∈ R for all r ∈ R ok, when I multiply
the element x by R scalar multiply, the answer is just x multiplied by R on the right ok.
This makes R into a right R-module, the addition is just still the usual addition. Then, what
do homomorphisms look like?

Then, f : R → R homomorphisms are exactly of the following kind, it just takes ring
element f(r) and multiplies on the left by some element a of the ring f(r) is this for some
fixed element a in the ring R ok. So, this is the ”left multiplication by ’a’ map” ok. So, when
you think of R as a left module over itself the homomorphisms turn out to be the right mul-
tiplication maps and when you think of it as a right module over itself, the homomorphisms
turn out to be left multiplication maps ok and this is a this is an interesting structure that
comes up here and that something that we will take up again later on ok.
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