Algebra - I Prof. S. Viswanath & Prof. Amritanshu Prasad Department of Mathematics Indian Institute of Technology, Madras

ALGEBRA I

1. Lecture 06: Group Actions

Let G be a group. A group action is a function from $G \times X \to X$ satisfying:

Identity axiom $e \cdot x = x$

Compatibility $gh \cdot x = g(h \cdot x)$

We use the symbol $G \circlearrowright X$.

Example 1.1. The trivial action of a group on a set is defined to be $g \cdot x = x$ for all $g \in G, x \in X$.

Example 1.2. The most basic example is the (left) translation action of a group G on itself defined by $g \cdot h = gh$.

Example 1.3. The (right) translation action of a group G on itself is defined as $g \cdot h = hg^{-1}$.

Example 1.4. The permutation group S_n acts on [n] by $\sigma \cdot j = \sigma(j)$ for all $\sigma \in S_n, j \in [n]$.

Example 1.5. Given a graph Γ on n vertices, $Aut(\Gamma)$ is a subgroup of S_n comprising permutations of the vertices preserve the structure of the graph.

Two elements x, y of X lie in the same G-orbit of X if there exists an element $g \in G$ such that $y = g \cdot x$. This is an equivalence on elements of X. $G \setminus X$ denotes the set of orbits of X.

Example 1.6. The automorphism group of this graph is generated by (13) and (24). The orbits are $\{1,3\}$ and $\{2,4\}$.

The stabilizer of an element $x \in X$, denoted G_x , is a subgroup of G comprising all $g \in G$ such that gx = x.

Theorem 1.7. For an element x of a G-set X, let \mathcal{O}_x denote the orbit of x. Then

$$|G| = |G_x||\mathcal{O}_x|.$$

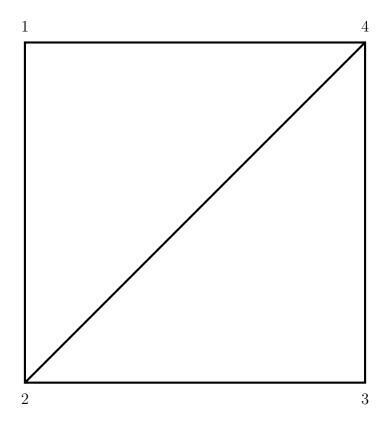


FIGURE 1. The graph Γ .