
Lecture 59 [Homomorphisms]

Let us talk about Homomorphisms of Modules . So, suppose R is a ring and M and N are 
two R modules. So, they need to be modules out the same ring R, then a map a function 
from f : M → N is said to be a homomorphism and sometimes we call it by other names we 
sometimes say it is an R linear map it is another word for homomorphism or if we want to 
emphasize the ring R we sometimes call it an R - homomorphism ok.

So, the there are sort of many different words we use for this. So, homomorphism of R 
modules is a map satisfying the following two properties; one that f(x+y) equals f(x)+f(y) 
for all x and y in the set M and property two is that f(rx) should be r · f(x) . So, this is the 
for all x in M and for all ring elements R in R ok. So, in other words a module remember 
has two important operations the that of addition and scalar multiplication by the ring R 
and homomorphism is a map which preserves these two operations ok. Now so, what are you 
know if you sort of look carefully at this definition notice that this + here is the addition in 
the space M this + on the right is the addition in the space N.
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Similarly, if I take this scalar multiplication here r · x this · is scalar multiplication in
M and the right hand side is scalar multiplication in N ok. Now one quick observation if
you forgot for the moment that the modules had a scalar multiplication just think of them
as Abelian groups under addition. Then a homomorphism if you just look at property 1
alone here in particular a homomorphism of R modules is in fact, a homomorphism of the
underlying abelian groups M and N ok. So, observe that this property 1 says exactly that f
is a group homomorphism of the group abelian group (M+) to the abelian group (N+) ok
is a group homomorphism from (M+)→ (N+) ok. Now, property 2 of course, says that in
addition to being a group homomorphism it also respects the scalar multiplication ok.

Now let us look at examples. So, this is must be a familiar notion from linear algebra
a map which preserves addition and scalar multiplication. So, this is what we call a linear
transformation right. So, if R = K a field and if M and N are . So, R modules therefore,
they are K vector spaces , then homomorphism is exactly what we would call a linear
transformation f : M → N is an R homomorphism means that f is a linear transformation
of these two vector spaces ok .

So, it is just that familiar notion sort of imported to the context of modules over any ring
. So, that is the the first example now here is a quick remark . So, of course, all these were
defined for left modules ah, but there is it is not surprising how one defines homomorphisms
for right modules ah, you just demand that it preserves the scalar multiplication on the right
ok.

So, remark if M and N are right R modules , then a homomorphism a homomorphism
is a map such that it preserves addition as before and it preserves sort of the right scalar
multiplication . So, so recall I sort of spoke about this notational convention for right modules
we often think of it as the the scalar sort of multiplying on the right ok. So, f(x ·r) = f(x) ·r
. So, if you have a map satisfying these conditions then you would call it a homomorphism of
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right modules ok. Now let us look at more examples. So, I talked about example 1 which is
that of vector spaces and linear transformations . Example 2 so, a general class of examples if
N is a sub module of M if N is a sub module of M then the inclusion map. So, from N →M
there is what is called the inclusion map it is called I which does the following it takes each
element to itself ok. So, it is just N is after all a subset of M . So, any element of N is
necessarily an element of M as well. So, the inclusion map is; obviously, a homomorphism
in fact, it is sort of trivially a homomorphism .

Because the you know x+ y of course, goes to x+ y, rx goes to rx . So, the properties are
are obvious. So, in particular if I take N equals M then the inclusion map becomes what is
called the identity map right which takes every element to itself . So, this is usually denoted
as id or id sub M this is of course, a homomorphism 2 ok. So, the identity homomorphism
or the inclusion homomorphisms now example 3 let us take the same setting as before if N
is a sub module of M if N is a sub of M by which I mean sub module then I consider the
quotient. So, recall we talked about the quotient M by N which is the set of all cosets of N
and M , now from M to the quotient I have what is called the projection map ok which is
what does it do it takes each element x of M and maps it to its corresponding coset x + N
ok.

So, this projection map is a homomorphism ok, let us check this quickly this just follows
from the way the addition and the scalar multiplication are defined on the right hand side
on the quotient . So, let us check that π(x+ y). So, what is π(x+ y) = (x+ y) +N it is just
the coset of the the element (x+N) + (y+N), but if you recall the definition this is exactly
how addition is defined in the quotient module ok.

Now, π(rx) similarly is just the it is the the coset of rx+N , but again by definition that
is exactly how scalar multiplication was defined on the quotient module ok. So, these two
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equations here establish that this map π is in fact, a R module homomorphism. So, we have
these natural classes of examples the inclusion and the projection maps .

Now, let us look for other examples. So, example 4 if we have a ring if we take our ring R
to be the the ring of integers then recall that if I have two R modules . So, Z modules are the
same as abelian groups ok this is the same as saying that M and N are really abelian groups
ok. And what is a homomorphism now from f : M → N ok. So, homomorphism supposed
to satisfy two properties f(x+y) = f(x)+f(y) . In other words it is a group homomorphism
and it should satisfy this compatibility with respect to for all x and M compatibility with
respect to scalar multiplication by elements of Z, but observe that this second property is
superfluous we do not really need this one .

If the function satisfies the first property that f(x + y) = f(x) + f(y) then the second
property is automatically true ok this implies the second one automatically for Z modules
and why is that because recall that f of. So, if r is an integer . So, let us say for the
moment let us suppose r is a positive integer then recall that this scalar multiplication was
just repeated addition.

So, you just had to add x with itself r · x right, this is how we defined it and if the first
property is true it means f(x + x + ... + x) = f(x) + f(x) + .... + f(x) those many · . This
is just by using the first property alone that it is a group group homomorphism this implies
this, but that is exactly the definition of how the element rf(x) ok.

So, of course, I will just leave it for you to check that the same sort of thing holds if r
is negative or 0. So, what this really says is recall we said if you a Z module is essentially
the data of just the abelian group ok, the scalar multiplication is defined in terms of the
addition and for homomorphisms a similar thing holds a homomorphism of Z modules is just
a homomorphism of the underlying abelian groups the compatibility with respect to scalar
multiplication just follows naturally as a corollary ok.

So, that is the fourth example . Let us do our other standard example which is the ring
K[X] of polynomials in one variable x. So, where K is a field and here again we know what.
So, let us say M is an R module and recall that modules over the polynomial ring K[X] are
the same as well what is it it is like having a vector space V together with a linear operator
on it ok.

So, where V is a some vector space over the field K. So, it is a K vector space where
V is the K vector space and T : V → V is a linear operator ok and recall again from all
our previous lectures that the element x the polynomial x acts as the linear operator T ok .
Now, similarly let us take N that is also given to be an R module . So, let us assume that N
corresponds to the pair (W,S) where W again is a K vector space and S is a linear operator
on W ok. So, now, what we are going to do is to try and figure out what it means for a map
f : M → N to be a homomorphism. So, suppose I give you a homomorphism of R modules
of K[X] module. So, suppose f from M → N is a homomorphism of K[X] modules ok.

So, what does that mean ok. So, let us check what it means now let us go to the next
page . So, observe that it just means that I have the additivity property. So, this means
two things number 1 f(v1 + v2) for all v1, v2 ∈ V . So, notice that you know when I say M
and N are given by V and W . So, V and W recall are the underlying spaces. So, I should
probably just replace M and N by the underlying vector spaces V and W ok. So, I the the
set is V and W and I have a map between them which satisfies these two axioms number 1
f(v1 + v2) = f(v1) + f(v2) . So, this is the additivity .



5

Second property is f(rv) = rf(v) ok. So, let us try and analyze what the the second
property means. So, we will try and understand this. So, let us do the following we will start
out by so first let us take. So, case a let me take r to be an element of the field K itself ok r
in general it can be any polynomial it is an element. So, remember this is K[X]. So, I should
put in all polynomials in x there, but for a start I will just take the constant polynomials ok.

So, take r to be a constant polynomial . So, in this case the I know that this is true that
f(rv) . So, which implies I conclude from property 2 . So, property 2 in particular implies
that f(rv) = rf(v) for all constant polynomials ok. Now, what does this mean this says that
if I multiply v by a scalar from the field K that scalar can be pulled out ok . Now let us
analyze this property so, I have this guy together with the additivity with the first property
. So, now, put these two together and let us stare hard at it what does it tell us about f.

It says that f is a linear transformation of the vector spaces V and W ok. So, this the
the 2 properties I marked in green are exactly the definition of f : V → W is a linear
transformation ok of these vector spaces. So, linear transformation of the K vector spaces
V and W ok or V → W really ok. So, that is only part of the data we have not use the full
force of the hypothesis, we have concluded that at the very least f is a linear transformation
from V → W .

Now, let us do still more let us also take the polynomial x here. So, far we have taken r
to only be the constant polynomial. So, case b let me take for r I will take the polynomial
x1 or x this is of course, a valid choice of scalar it is an element of the ring . So, now, I will
plug this in and see what I get. So, remember f(rv) = rf(v) for all v ∈ V . So, this again is
for all v ∈ V .

Now, what does this imply since r is x this means that f(x) acting on v should be x acting
on f(v) and recall that the action of x is exactly given by the action of the polynomial by
the operator T . So, this is the same as S acting on f(v) ok. So, this last equation comes
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from realizing that the actions. So, this this data here exactly says that the polynomial x
acts as T and the polynomial x acts as S on V and W respectively ok.

So, now, let us unravel this a little bit more. So, we have concluded the following that I
have this operator f it is a linear operator from. So, f is a linear sorry linear transformation
and second property I have conclude is that f composition T is the same as S composition
f ok. So, that is what this this last equation says f(T )v is the same as . So, this equation
here you just saying that f ◦ T = S ◦ f .

Now, let us try to figure out where these compositions really live. So, remember T : V → V
and S : W → W . So, what does this say it says that f ◦ T = S ◦ f ok. So, let me think of it
as follows that let me draw T in the in the opposite direction it is a map from V → V . So,
let me think of it as going like this.

So, now observe what I am saying, I am saying that whether I you know. So, if I look at
. So, maybe I should put the f here ok good. So, let me now draw it in the same direction.
So, that this diagram is slightly more symmetrical. So, I would draw the diagram in this
way. So, let me just put one more additional f on the bottom. So, what I have drawn is a
diagram of these vector spaces V and W a little square of maps.

Now, let us observe what this this equality says about this diagram. So, it is says that
if I look at f ◦ T means I first come along T and then go along f . So, it is it is this way
I come from V and go down to W the other side S ◦ f is the other path I first do f and
then I do S ok. So, what this identity is telling me is that whether I go along this this L
here or this inverted L I get the same answer ok. So, this particular diagrammatic way of
understanding such compositions. So, we usually say that this ”diagram commutes.” So, we
draw this diagram and when we say this diagram commutes it just means that whether you
go along one path or the other path the answer is the same ok and we usually put this little
arrow here to say the diagram commutes ok .
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So, this is really what a homomorphism is between two K[X] modules we have concluded
that it must be a linear transformation which makes this diagram commute which such that
f ◦ T = S ◦ fok.

And of course, you can say that we still have not used the full force of the hypothesis
we only plugged in r to be a constant and we took r equals x power 1 what about other
polynomials what about r equals x square x cube what about x+x+x square and so on . Now
it turns out all of those do not really add any more information to this to this mix ok. So, if a
function f satisfies these two properties that it is a linear transformation makes the diagram
commute then it automatically ensures that it is a r linear map or a or a homomorphism ok
meaning all the other r’ s can also be pulled out.

So, let me just state that as my final conclusion ok. So, f from V → W is a K[X] linear
map . So, I am now using the alternate terminology for homomorphism. So, I will keep going
switching back and forth between these various terminologies f from V → W is a K[X] linear
map if and only if f satisfies two properties number 1 f from V → W is K linear . In other
words it is a linear transformation of i e is a linear transformation of these vector spaces and
property 2 it makes the diagram commute the diagram commutes what diagram the one that
I just do ok V → W , V → W f, T, S this diagram commutes ok.

So, I claim that this is if and only if. So, I have shown one direction now I leave it as
an exercise for you to show that the reverse is also true just having these two properties is
enough to ensure that this map will actually be K[X] linear ok and to do that you really have
to show if x you know you can sort of pull the x out, then you can also pull out x2, x3, x4, ..
and so on ok, it is the same sort of theme we have seen before ok .
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